Regular and Chaotic Dynamics

, Volume 20, Issue 5, pp 497–517 | Cite as

The dynamics of an articulated n-trailer vehicle

  • Alejandro Bravo-Doddoli
  • Luis C. García-Naranjo


We derive the reduced equations of motion for an articulated n-trailer vehicle that moves under its own inertia on the plane. We show that the energy level surfaces in the reduced space are (n + 1)-tori and we classify the equilibria within them, determining their stability. A thorough description of the dynamics is given in the case n = 1.


dynamics nonholonomic constraints n-trailer vehicle 

MSC2010 numbers

37J60 70F25 70G45 58A30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bolzern, P., DeSantis, R., Locatelli, A., and Togno, S., Dynamic Model of a Two-Trailer Articulated Vehicle Subject to Nonholonomic Constraints, Robotica, 1996, vol. 14, no. 4, pp. 445–450.CrossRefGoogle Scholar
  2. 2.
    Borisov, A. V. and Mamaev, I. S., The Dynamics of a Chaplygin Sleigh, J. Appl. Math. Mech., 2009, vol. 73, no. 2, pp. 156–161; see also: Prikl. Mat. Mekh., 2009, vol. 73, no. 2, pp. 219–225.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Borisov, A. V., Lutsenko, S. G., and Mamaev, I. S., Dynamics of a Wheeled Carriage on a Plane, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 4, pp. 39–48 (Russian).Google Scholar
  4. 4.
    Castro, A. L. and Montgomery, R., Spatial Curve Singularities and the Monster/Semple Tower, Israel J. Math., 2012, vol. 192, no. 1, pp. 381–427.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Chaplygin, S.A., On the Theory ofMotion of Nonholonomic Systems. The Reducing-Multiplier Theorem, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 369–376; see also: Mat. Sb., 1912, vol. 28, no. 2, pp. 303–314.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Fedorov, Yu. N., García-Naranjo, L.C., and Vankerschaver, J., The Motion of the 2D Hydrodynamic Chaplygin Sleigh in the Presence of Circulation, Discrete Contin. Dyn. Syst., 2013, vol. 33, no. 9, pp. 4017–4040.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Fedotov, A. V. and Furta, S.D., On Stability of Motion of a Chain of n Driven Bodies, Regul. Chaotic Dyn., 2002, vol. 7, no. 3, pp. 249–268.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Grabowski, J., de León, M., Marrero, J.C., and Martín de Diego, D., Nonholonomic Constraints: A New Viewpoint, J. Math. Phys., 2009. vol. 50, no. 1, 013520, 17 pp.CrossRefGoogle Scholar
  9. 9.
    Jean, F., The Car with N Trailers: Characterization of the Singular Configurations, ESAIM Control Optim. Calc. Var., 1996, vol. 1, pp. 241–266.MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Lamiraux, F., Sekhavat, S., and Laumond, J.P., Motion Planning and Control for Hilare Pulling a Trailer, IEEE Trans. Robot. Automat., 1999, vol. 15, pp. 640–652.CrossRefGoogle Scholar
  11. 11.
    Landau, L. D. and Lifshitz, E. M., Course of Theoretical Physics: Vol. 1. Mechanics, 3rd ed., Oxford: Pergamon, 1976.Google Scholar
  12. 12.
    Laumond, J.P., Controllability of Multibody Mobile Robot, IEEE Trans. Robot. Automat., 1993, vol. 9, pp. 755–763.CrossRefGoogle Scholar
  13. 13.
    Robot Motion Planning and Control, J.P. Laumond (Ed.), Lect. Notes Control Inform. Sci., vol. 229, New York: Springer, 1998.Google Scholar
  14. 14.
    Tilbury, D., Murray, R. M., and Sastry, S. Sh., Trajectory Generation for the n-Trailer Problem Using Goursat Normal Form, IEEE Trans. Automat. Control, 1995, vol. 40, no. 5, pp. 802–819.MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Montgomery, R. and Zhitomirskii, M., Geometric Approach to Goursat Flags, Ann. Inst. H. Poincaré Anal. Non Lineaire, 2001, vol. 18, no. 4, pp. 459–493.MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Neimark, Ju. I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence,RI: AMS, 1972.Google Scholar
  17. 17.
    Osborne, J.M. and Zenkov, D.V., Steering the Chaplygin Sleigh by a Moving Mass, in Proc. on the 44th IEEE Conf. on Decision and Control, 2005 and 2005 European Control Conf. (CDC-ECC’05), pp. 1114–1118.Google Scholar
  18. 18.
    Pelletier, F. and Slayman, M., Configurations of an Articulated Arm and Singularities of Special Multi- Flags, SIGMA Symmetry Integrability Geom. Methods Appl., 2014. vol. 10, Paper 059, 38 pp.MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Alejandro Bravo-Doddoli
    • 1
  • Luis C. García-Naranjo
    • 2
  1. 1.Depto. de Matemáticas, Facultad de Ciencias, UNAM, Circuito Exterior S/NCiudad UniversitariaMexico CityMexico
  2. 2.Departamento de Matemáticas y MecánicaIIMAS-UNAMMexico CityMexico

Personalised recommendations