Skip to main content
Log in

Plate falling in a fluid: Regular and chaotic dynamics of finite-dimensional models

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

Results are reviewed concerning the planar problem of a plate falling in a resisting medium studied with models based on ordinary differential equations for a small number of dynamical variables. A unified model is introduced to conduct a comparative analysis of the dynamical behaviors of models of Kozlov, Tanabe-Kaneko, Belmonte-Eisenberg-Moses and Andersen-Pesavento-Wang using common dimensionless variables and parameters. It is shown that the overall structure of the parameter spaces for the different models manifests certain similarities caused by the same inherent symmetry and by the universal nature of the phenomena involved in nonlinear dynamics (fixed points, limit cycles, attractors, and bifurcations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maxwell, J. K., On a Particular Case of Descent of a Heavy Body in a Resisting Medium, Cambridge and Dublin Math. Journ., 1854, vol. 9, pp. 145–148.

    Google Scholar 

  2. Kirchhoff, G. R., Űber die Bewegung eines Rotationsörpers in einer Flüssigkeit, J. Reine Angew. Math., 1870, vol. 1870, no. 71, pp. 237–262.

    Article  MathSciNet  Google Scholar 

  3. Zhukovsky N.E. Collected Works: Vol. 4, Moscow: Gostekhizdat, 1949, pp. 5–34 (Russian).

    Google Scholar 

  4. Belmonte, A. and Moses, E., Flutter and Tumble in Fluids, Physics World, 1999, vol. 12, no. 4, pp. 21–25.

    Google Scholar 

  5. Finn, D.L., Falling Paper and Flying Business Cards, SIAM News, 2007, vol. 40, no. 4, 3 pp.

    Google Scholar 

  6. Ern, P., Risso, F., Fabre, D., and Magnaudet, J., Wake-Induced Oscillatory Paths of Bodies Freely Rising or Falling in Fluids, Annu. Rev. Fluid Mech., 2012, vol. 44, pp. 97–121.

    Article  MathSciNet  Google Scholar 

  7. Lamb, H., Hydrodynamics, 6th ed., New York: Dover, 1945.

    Google Scholar 

  8. Borisov, A. V. and Mamaev, I. S., Dynamics of a Rigid Body: Hamiltonian Methods, Integrability, Chaos, 2nd ed., Izhevsk: Institute of Computer Science, 2005 (Russian).

    Google Scholar 

  9. Sedov, L. I., Two-Dimensional Problems in Hydrodynamics and Aerodynamics, New York: Wiley, 1965.

    MATH  Google Scholar 

  10. Kochin, N.E., Kibel, I. A., and Roze, N. V., Theoretical Hydrodynamics, New York: Wiley, 1964.

    Google Scholar 

  11. Birkhoff, G., Hydrodynamics: A Study in Logic, Fact, and Similitude, Princeton: Princeton Univ. Press, 1950.

    MATH  Google Scholar 

  12. Arzhanikov, N. S. and Sadekova, G. S., Aerodynamics of Aircrafts, Moscow: Vysshaja Shkola, 1983 (Russian).

    Google Scholar 

  13. Strange Attractors, Y. G. Sinai, L.P. Shil’nikov (Eds.), Moscow: Mir, 1981 (Russian).

  14. Schuster, H.G. and Just, W., Deterministic Chaos: An Introduction, Weinheim: Wiley-VCH, 2005.

    Book  Google Scholar 

  15. Kuznetsov, S.P., Dynamical Chaos, 2nd ed., Moscow: Fizmatlit, 2006 (Russian).

    Google Scholar 

  16. Kuznetsov, A.P., Kuznetsov, S.P., Sataev, I.R., and Chua, L. O., Multi-Parameter Criticality in Chua’sCircuit at Period-Doubling Transition to Chaos, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1996, vol. 6, no. 1, pp. 119–148.

    Article  MATH  MathSciNet  Google Scholar 

  17. Borisov, A. V., Jalnin, A.Yu., Kuznetsov, S.P., Sataev, I. R., and Sedova, J.V., Dynamical PhenomenaOccurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 512–532.

    Article  MATH  MathSciNet  Google Scholar 

  18. Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., Lyapunov Characteristic Exponents forSmooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them, Meccanica, 1980, vol. 15, pp. 9–30.

    Article  MATH  Google Scholar 

  19. Kuznetsov, Yu.A., Elements of Applied Bifurcation Theory, 3rd ed., Appl. Math. Sci., vol. 112, iNewYork: Springer, 2004.

  20. Borisov, A. V., Kozlov, V. V., Mamaev, I. S., Asymptotic stability and associated problems of dynamicsof falling rigid body, Regul. Chaotic Dyn., 2007, vol. 12, no. 5, pp. 531–565.

    Article  MATH  MathSciNet  Google Scholar 

  21. Borisov, A. V. and Mamaev, I. S., On the Motion of a Heavy Rigid Body in an Ideal Fluid withCirculation, Chaos, 2006, vol. 16, no. 1, 013118, 7 pp.

    Article  MathSciNet  Google Scholar 

  22. Kozlov, V.V., On the Problem of Fall of a Rigid Body in a Resisting Medium, Mosc. Univ. Mech. Bull., 1990, vol. 45, no. 1, pp. 30–36; see also: Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1990, no. 1, pp. 79–86.

    MATH  Google Scholar 

  23. Tanabe, Y. and Kaneko, K., Behavior of a Falling Paper, Phys. Rev. Lett., 1994, vol. 73, no. 10, pp. 1372–1375.

    Article  Google Scholar 

  24. Mahadevan, L., Aref, H., and Jones, S. W., Comment on ¡¡Behavior of a Falling Paper¿¿, Phys. Rev.Lett., 1995, vol. 75, no. 7, p. 1420.

    Article  Google Scholar 

  25. Tanabe, Y. and Kaneko, K., Tanabe and Kaneko Reply, Phys. Rev. Lett., 1995, vol. 75, no. 7, p. 1421.

    Article  Google Scholar 

  26. Mahadevan, L., Tumbling of a Falling Card, C. R. Acad. Sci. Paris, Sér. 2b, 1996, vol. 323, pp. 729–736.

    MATH  Google Scholar 

  27. Belmonte, A., Eisenberg, H., and Moses, E., From Flutter to Tumble: Inertial Drag and Froude Similarityin Falling Paper, Phys. Rev. Lett., 1998, vol. 81, no. 2, pp. 345–348.

    Article  Google Scholar 

  28. Andersen, A., Pesavento, U., and Wang, Z. J., Analysis of Transitions between Fluttering, Tumbling andSteady Descent of Falling Cards, J. Fluid Mech., 2005, vol. 541, pp. 91–104.

    Article  MATH  MathSciNet  Google Scholar 

  29. Pesavento, U. and Wang, Z. J., Falling Paper: Navier–Stokes Solutions, Model of Fluid Forces, andCenter of Mass Elevation, Phys. Rev. Lett., 2004, vol. 93, no. 14, 144501, 4 pp.

    Article  Google Scholar 

  30. Andersen, A., Pesavento, U., and Wang, Z. J., Unsteady Aerodynamics of Fluttering and TumblingPlates, J. Fluid Mech., 2005, vol. 541, pp. 65–90.

    Article  MATH  MathSciNet  Google Scholar 

  31. Noor, D. Z., Chern, M. J., and Horng, T. L., Study of a Freely Falling Ellipse with a Variety of AspectRatios and Initial Angles, in Proc. of the 22nd Internat. Conf. on Parallel Computational FluidDynamics, http://www1.math.fcu.edu.tw/˜tlhorng/paper/Extended abstract.pdf (2010).

  32. Caetano, V. F. R., Calculation of the Dynamic Behavior of a Falling Plate or Disk in a Fluid,https://fenix.tecnico.ulisboa.pt/downloadFile/395142133553/resumo.pdf (2010).

  33. Dupleich, P., Rotation in Free Fall of Rectangular Wings of Elongated Shape,http://digital.library.unt.edu/ark:/67531/metadc64688/ (1949, UNT Digital Library).

  34. Huang, W., Liu, H., Wang, F., Wu, J., and Zhang, H.P., Experimental Study of a Freely Falling Platewith an Inhomogeneous Mass Distribution, Phys. Rev. E., 2013, vol. 88, no. 5, 053008, 7 pp.

    Article  Google Scholar 

  35. Mahadevan, L., Ryu, W. S., and Samuel, A. D. T., Tumbling Cards, Phys. Fluids, 1999, vol. 11, no. 1,pp. 1–3.

    Article  MATH  Google Scholar 

  36. Field, S. B., Klaus, M., Moore, M. G., and Nori, F., Chaotic Dynamics of Falling Disks, Nature, 1997, vol. 388, no. 6639, pp. 252–254.

    Article  Google Scholar 

  37. Heisinger, L., Newton, P., and Kanso, E., Coins Falling in Water, J. Fluid Mech., 2014, vol. 742, pp. 243–253.

    Article  Google Scholar 

  38. Leweke, T., Thompson, M.C., and Hourigan, K., Motion of a Möbius Band in Free Fall, J. Fluids Struct., 2009, vol. 25, no. 4, pp. 687–696.

    Article  Google Scholar 

  39. Lugt, H. J., Autorotation, Annu. Rev. Fluid Mech., 1983, vol. 15, no. 1, pp. 123–147.

    Article  Google Scholar 

  40. Paoletti, P. and Mahadevan, L., Planar Controlled Gliding, Tumbling and Descent, J. Fluid Mech., 2011, vol. 689, pp. 489–516.

    Article  MATH  MathSciNet  Google Scholar 

  41. Ramodanov, S. M. and Tenenev, V.A., Motion of a Body with Variable Distribution of Mass in a BoundlessViscous Liquid, Nelin. Dinam., 2011, vol. 7, no. 3, pp. 635–647 (Russian).

    Google Scholar 

  42. Fernandes, A. C. and Sefat, S.M., Bifurcation from Fluttering to Autorotation of a Hinged Vertical FlatPlate Submitted to a Uniform Current, in Proc. of the 11th Internat. Conf. on the Stability of Ships andOcean Vehicles (23-28 September 2012, Athens, Greece), pp. 1–12.

  43. Michelin, S. and Smith, S. G. L., Falling Cards and Flapping Flags: Understanding Fluid–SolidInteractions Using an Unsteady Point Vortex Model, Theor. Comp. Fluid Dyn., 2010, vol. 24, nos. 1–4, pp. 195–200.

    Article  MATH  Google Scholar 

  44. Andronov, A.A., Vitt, A. A., and Khaikin, S. E., Theory of Oscillators, Oxford: Pergamon Press, 1966.

    MATH  Google Scholar 

  45. Butenin N.V., Neumark Yu. I., Fufaev N.A. Introduction to the Theory of Nonlinear Oscillations, 2nd ed., Moscow: Nauka, 1987 (Russian).

    MATH  Google Scholar 

  46. Lorenz E. N. Deterministic Nonperiodic Flow, J. Atmospheric Sci., 1963, vol. 20, no. 2, pp. 130–141.

    Article  Google Scholar 

  47. Sparrow, C., The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, New York: Springer, 1982.

    Book  MATH  Google Scholar 

  48. Shilnikov, L., Mathematical Problems of Nonlinear Dynamics: A Tutorial, J. Franklin Inst., 1997,vol. 334, no. 5, pp. 793–864.

    Article  MathSciNet  Google Scholar 

  49. Tucker, W., A Rigorous ODE Solver and Smale’s 14th Problem, Found. Comput. Math., 2002, vol. 2,no. 1, pp. 53–117.

    Article  MATH  MathSciNet  Google Scholar 

  50. Pikovskii, A. S., Rabinovich, M. I., and Trakhtengerts, V.Yu., Onset of Stochasticity in Decay Confinementof Parametric Instability, JETP, 1978, vol. 47, no. 4, pp. 715–719; see also: Zh. Eksp. Teor. Fiz.,1978, vol. 74, no. 4, pp. 1366–1374.

    Google Scholar 

  51. Hénon, M., On the Numerical Computation of Poincaré Maps, Phys. D, 1982, vol. 5, pp. 412–414.

    Article  MATH  MathSciNet  Google Scholar 

  52. Swift, J. W. and Wiesenfeld, K., Suppression of Period Doubling in Symmetric Systems, Phys. Rev.Lett., 1984, vol. 52, no. 9, pp. 705–708.

    Article  MathSciNet  Google Scholar 

  53. Magnus, K., Popp, K., and Sextro,W., Schwingungen: Eine Einf¨uhrung in die physikalischen Grundlagenund die theoretische Behandlung von Schwingungsproblemen, Wiesbaden: Springer, 2008.

    Google Scholar 

  54. Feigenbaum, M. J., Quantitative Universality for a Class of Nonlinear Transformations, J. Stat. Phys., 1978, vol. 19, no. 1, pp. 25–52.

    Article  MATH  MathSciNet  Google Scholar 

  55. Feigenbaum, M. J., Universal Behavior in Nonlinear Systems, Phys. D, 1983, vol. 7, nos. 1–3, pp. 16–39.

    Article  MathSciNet  Google Scholar 

  56. Borisov, A. V., Kazakov, A.O., Sataev, I.R., The Reversal and Chaotic Attractor in the NonholonomicModel of Chaplygin’s Top, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 718–733.

    Article  MathSciNet  Google Scholar 

  57. Kuznetsov, A.P., Migunova, N.A., Sataev, I.R., Sedova, Y.V., Turukina, L.V., From Chaos to Quasi-Periodicity, Regul. Chaotic Dyn., 2015, vol. 20, no. 2, pp. 189–204.

    Article  MathSciNet  Google Scholar 

  58. Vetchanin E.V., Mamaev I. S., Tenenev V. A., The Self-propulsion of a Body with Moving InternalMasses in a Viscous Fluid, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 100–117.

    Article  MATH  MathSciNet  Google Scholar 

  59. Sokolov S.V., Ramodanov S.M., Falling Motion of a Circular Cylinder Interacting Dynamically with aPoint Vortex, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 184–193.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey P. Kuznetsov.

Additional information

The article is dedicated to the 65th anniversary of Academician Valery V. Kozlov, with respect and admiration for his contribution to the problem under review

This is a translation of the paper “Motion of a falling card in a fluid: Finite-dimensional models, complex phenomena, and nonlinear dynamics”, Nelin. Din., 2015, vol. 11, no. 1, pp. 3–49, previously published only in Russian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.P. Plate falling in a fluid: Regular and chaotic dynamics of finite-dimensional models. Regul. Chaot. Dyn. 20, 345–382 (2015). https://doi.org/10.1134/S1560354715030090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354715030090

Keywords

MSC2010 numbers

Navigation