Regular and Chaotic Dynamics

, Volume 18, Issue 5, pp 539–552 | Cite as

On the orbital stability of pendulum-like vibrations of a rigid body carrying a rotor

Article

Abstract

One of the most notable effects in mechanics is the stabilization of the unstable upper equilibrium position of a symmetric body fixed from one point on its axis of symmetry, either by giving the body a suitable angular velocity or by adding a suitably spinned rotor along its axis. This effect is widely used in technology and in space dynamics.

The aim of the present article is to explore the effect of the presence of a rotor on a simple periodic motion of the rigid body and its motion as a physical pendulum.

The equation in the variation for pendulum vibrations takes the form
$$\frac{{d^2 \gamma _3 }} {{du^2 }} + \alpha \left[ {\alpha v^2 + \frac{1} {2} + \rho ^2 - \left( {\alpha + 1} \right)v^2 sn^2 u + 2v\rho \sqrt \alpha cnu} \right]\gamma _3 = 0,$$
in which α depends on the moments of inertia, ρ on the gyrostatic momentum of the rotor and ν (the modulus of the elliptic function) depends on the total energy of the motion. This equation, which reduces to Lame’s equation when ρ = 0, has not been studied to any extent in the literature. The determination of the zones of stability and instability of plane motion reduces to finding conditions for the existence of primitive periodic solutions (with periods 4K(ν), 8K(ν)) with those parameters. Complete analysis of primitive periodic solutions of this equation is performed analogously to that of Ince for Lame’s equation. Zones of stability and instability are determined analytically and illustrated in a graphical form by plotting surfaces separating them in the three-dimensional space of parameters. The problem is also solved numerically in certain regions of the parameter space, and results are compared to analytical ones.

Keywords

stability pendulum-like motions planar motions periodic differential equation Hill’s equation Lame’s equation 

MSC2010 numbers

70E50 70H14 70J25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kowalevski, S., Sur le problème de la rotation d’un corps solide autour d’un point fixe, Acta Math., 1889, vol. 12, no. 2, pp. 177–232.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Leimanis, E., The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point, Springer Tracts in Natural Philosophy, vol. 7, Berlin: Springer, 1965.Google Scholar
  3. 3.
    Borisov, A.V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).Google Scholar
  4. 4.
    Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Topology and Stability of Integrable Systems, Uspekhi Mat. Nauk, 2010, vol. 65, no. 2, pp. 71–132 [Russian Math. Surveys, 2010, vol. 65, no. 2, pp. 259–318].MathSciNetCrossRefGoogle Scholar
  5. 5.
    Grammel, R., The Gyroscope: Its Theory and Applications, Berlin: Springer, 1950.Google Scholar
  6. 6.
    Rumyantsev, V.V., Stability of Permanent Rotations of a Heavy Rigid Body, Prikl. Mat. Mekh., 1956, vol. 20, no. 1, pp. 51–66 (Russian).MATHGoogle Scholar
  7. 7.
    Schiehlen, W.O. and Weber, H. I., On the Stability of Staude’s Permanent Rotations of a Gyroscope with Damping, Ingenieur-Archiv, 1977, vol. 46, no. 5, pp. 281–292.CrossRefMATHGoogle Scholar
  8. 8.
    Bilimovich, A. D., Equations of the Motion of a Heavy Rigid Body about a Fixed Point, in Collection of Papers Devoted to Prof. G.K. Suslov, Kiev, 1911, pp. 23–74 (Russian).Google Scholar
  9. 9.
    Hess, W., Über die Eulerschen Bewegungsgleichungen und eine neue particuläre Lösung des Problems der Bewegung eines starren schweren Körpers um einen festen Punkt, Math. Ann., 1890, vol. 37, no. 2, pp. 178-1MathSciNetCrossRefGoogle Scholar
  10. 10.
    Schiff, P. A., Sur les équations du mouvement d’un solide pesant ayant un point fixe, Mat. Sb., 1904, vol. 24, no. 2, pp. 169–177 (Russian).Google Scholar
  11. 11.
    Stäckel, P., Die reduzierten Differenzialgleichungen der Bewegung des schweren unsymmetrischen Kreisels, Math. Ann., 1909, vol. 67, pp. 399–432.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kharlamova, E. I., Reduction of the Problem of Motion of a Body with a Fixed Point, to a Single Differential Equation, Mekh. Tverd. Tela, 1969, vol. 1, pp. 107–116 (Russian).Google Scholar
  13. 13.
    Yehia, H.M., On the Reduction of the Order of Differential Equations of Motion of a Rigid Body about a Fixed Point, Vestn. Mosk. Univ., Ser. 1. Mat. Mekh., 1976, no. 6, pp. 76–79 (Russian).Google Scholar
  14. 14.
    Yehia, H.M., On the Reduction of the Equations of Motion of a Rigid Body in an Axisymmetric Field, J. Mećan. Théor. Appl., 1983, vol. 2, no. 3, pp. 451–462.MATHGoogle Scholar
  15. 15.
    Yehia, H.M., On the Motion of a Rigid Body Acted upon by Potential and Gyroscopic Forces: 3. The Reduction of Order and Further Transformation, J. Mećan. Théor. Appl., 1986, vol. 5, no. 6, pp. 935–939.MathSciNetMATHGoogle Scholar
  16. 16.
    Yehia, H.M., On the Motion of a Rigid Body Acted upon by Potential and Gyroscopic Forces: 2. A new Form of the Equations of Motion of a Multiconnected Rigid Body in an Ideal Incompressible Fluid, J. Mećan. Théor. Appl., 1986, vol. 5, no. 5, pp. 755–762.MathSciNetMATHGoogle Scholar
  17. 17.
    Yehia, H.M., Qualitative Investigations of Plane and Similar Motions of a Solid about a Fixed Point, Prikl. Mat. Mekh., 1981, vol. 45, no. 4, pp. 618–623 [J. Appl. Math. Mech., 1981, vol. 45, no. 4, pp. 454–458].Google Scholar
  18. 18.
    Yehia, H. M., On the Stability of Plane Motions of a Rigid Body about a Fixed Point in a Newtonian Field of Force, Vestn. Mosk. Univ., Ser. 1. Mat. Mekh., 1981, no. 4. [Mosc. Univ. Mech. Bull., 1981, vol. 36, nos. 3–4, pp. 41–44].Google Scholar
  19. 19.
    Yehia, H. M., On the Stability of Plane Motions of a Heavy Rigid Body about a Fixed Point, ZAMM Z. Angew. Math. Mech., 1987, vol. 67, no. 12, pp. 641–648.CrossRefMATHGoogle Scholar
  20. 20.
    Tkhai, V. and Shvygin, A. L., On Stability of Rotations around a Horizontal Axis of a Heavy Rigid Body with One Fixed Point, in Problems of Investigation of Stability and Stabilization of Motion: Part 2, V. Ramyantsev (Ed.), Moscow: A.A.Dorodnitsyn Computing Centre of the Russian Academy of Science, 2000, pp. 149–157 (Russian).Google Scholar
  21. 21.
    Dovbysh, S. A., Oscillational Properties of Plane Motions in the Dynamics of a Symmetric Rigid Body, Mekh. Tverd. Tela, 1990, no. 4, pp. 11–19 (Russian).Google Scholar
  22. 22.
    Markeev, A.P., Plane and Quasi-Plane Rotations of a Heavy Rigid Body about a Fixed Point, Izv. AN SSSR. Mekh. Tverd. Tela, 1988, vol. 23, no. 4, pp. 29–36 (Russian).Google Scholar
  23. 23.
    Markeev, A.P., The Stability of the Plane Motions of a Rigid Body in the Kovalevskaya Case, Prikl. Mat. Mekh., 2001, vol. 65, no. 1, pp. 51–58 [J. Appl. Math. Mech., 2001, vol. 65, no. 1, pp. 47–54].MathSciNetGoogle Scholar
  24. 24.
    Markeev A.P., The Pendulum-Like Motions of a Rigid Body in the Goryachev-Chaplygin Case, Prikl. Mat. Mekh., 2004, vol. 68, no. 2, pp. 282–293 [J. Appl. Math. Mech., 2004, vol. 68, no. 2, pp. 249–258].MathSciNetMATHGoogle Scholar
  25. 25.
    Bardin, B. S., Stability Problem for Pendulum-Type Motions of a Rigid Body in the Goryachev-Chaplygin Case, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2007, no. 2, pp. 14–21 [Mech. Solids, 2007, vol. 42, no. 2, pp. 177–183].Google Scholar
  26. 26.
    Bardin, B. S., On the Orbital Stability of Pendulum-LikeMotions of a Rigid Body in the Bobylev-Steklov Case, Regul. Chaotic Dyn., 2010, vol. 15, no. 6, pp. 702–714.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Bardin, B. S., Rudenko, T. V., and Savin, A. A., On the Orbital Stability of Planar Periodic Motions of a Rigid Body in the Bobylev-Steklov Case, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 533–546.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Bardin, B. S. and Savin, A. A., On the Orbital Stability of Pendulum-Like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point, Regul. Chaotic Dyn., 2012, vol. 17, nos. 3–4, pp. 243–257.MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Grioli, G., Esistenza e determinazione delle precessioni regolari dinamicamente possibili per un solido pesante asimmetrico, Ann. Mat. Pura Appl., 1947, vol. 4, pp. 271–281.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Bryum, A. Z., Investigation of the Regular Precession of a Heavy Rigid Body with a Fixed Point by Lyapunov’s First Method, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 1987, no. 19, pp. 68–72 (Russian).Google Scholar
  31. 31.
    Mozalevskaya, G.V., Kharlamov, A.P., and Kharlamova, E. I., Drift of G.Grioli’s Gyroscope, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 1992, no. 24, pp. 15–25.Google Scholar
  32. 32.
    Tkhai, V. N., The Stability of Regular Grioli Precessions, Prikl. Mat. Mekh., 2000, vol. 64, no. 5, pp. 848–857 [J. Appl. Math. Mech., 2000, vol. 64, no. 5, pp. 811–819].MathSciNetMATHGoogle Scholar
  33. 33.
    Markeev, A.P., On Stability of Regular Precessions of a Non-Symmetric Gyroscope, Regul. Chaotic Dyn., 2003, vol. 8, no. 2, pp. 297–304.MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Markeev, A.P., The Stability of the Grioli Precession, Prikl. Mat. Mekh., 2003, vol. 67, no. 4, pp. 556–571 [J. Appl. Math. Mech., 2003, vol. 67, no. 4, pp. 497–510].MathSciNetMATHGoogle Scholar
  35. 35.
    Markeev, A.P., On the Steklov Case in Rigid Body Dynamics, Regul. Chaotic Dyn., 2005, vol. 10, no. 1, pp. 81–93.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Malkin, I.G., Theory of Stability of Motion, Moscow: Gostekhizdat, 1966 (Russian).MATHGoogle Scholar
  37. 37.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G., Higher Transcendental Functions: In 2 Vols.: Based, in Part, on Notes Left by Harry Bateman, New York: McGraw-Hill, 1953.Google Scholar
  38. 38.
    Whittaker, E.T. and Watson, G.N., A Course of Modern Analysis, 4th ed., Cambridge: Cambridge Univ. Press, 1963.MATHGoogle Scholar
  39. 39.
    Arscott, F.M., Periodic Differential Equations, Oxford: Pergamon Press, 1964.MATHGoogle Scholar
  40. 40.
    Ince, E. L., The Periodic Lamé Functions, Proc. Roy. Soc. Edinburgh, 1940, vol. 60, no. 1, pp. 47–63.MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceMansoura UniversityMansouraEgypt
  2. 2.Department of Mathematics, Faculty of ScienceDamietta UniversityDamiettaEgypt

Personalised recommendations