Regular and Chaotic Dynamics

, Volume 18, Issue 5, pp 539–552

# On the orbital stability of pendulum-like vibrations of a rigid body carrying a rotor

• Hamad M. Yehia
• E. G. El-Hadidy
Article

## Abstract

One of the most notable effects in mechanics is the stabilization of the unstable upper equilibrium position of a symmetric body fixed from one point on its axis of symmetry, either by giving the body a suitable angular velocity or by adding a suitably spinned rotor along its axis. This effect is widely used in technology and in space dynamics.

The aim of the present article is to explore the effect of the presence of a rotor on a simple periodic motion of the rigid body and its motion as a physical pendulum.

The equation in the variation for pendulum vibrations takes the form
$$\frac{{d^2 \gamma _3 }} {{du^2 }} + \alpha \left[ {\alpha v^2 + \frac{1} {2} + \rho ^2 - \left( {\alpha + 1} \right)v^2 sn^2 u + 2v\rho \sqrt \alpha cnu} \right]\gamma _3 = 0,$$
in which α depends on the moments of inertia, ρ on the gyrostatic momentum of the rotor and ν (the modulus of the elliptic function) depends on the total energy of the motion. This equation, which reduces to Lame’s equation when ρ = 0, has not been studied to any extent in the literature. The determination of the zones of stability and instability of plane motion reduces to finding conditions for the existence of primitive periodic solutions (with periods 4K(ν), 8K(ν)) with those parameters. Complete analysis of primitive periodic solutions of this equation is performed analogously to that of Ince for Lame’s equation. Zones of stability and instability are determined analytically and illustrated in a graphical form by plotting surfaces separating them in the three-dimensional space of parameters. The problem is also solved numerically in certain regions of the parameter space, and results are compared to analytical ones.

## Keywords

stability pendulum-like motions planar motions periodic differential equation Hill’s equation Lame’s equation

## MSC2010 numbers

70E50 70H14 70J25

## Preview

Unable to display preview. Download preview PDF.

## References

1. 1.
Kowalevski, S., Sur le problème de la rotation d’un corps solide autour d’un point fixe, Acta Math., 1889, vol. 12, no. 2, pp. 177–232.
2. 2.
Leimanis, E., The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point, Springer Tracts in Natural Philosophy, vol. 7, Berlin: Springer, 1965.Google Scholar
3. 3.
Borisov, A.V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).Google Scholar
4. 4.
Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Topology and Stability of Integrable Systems, Uspekhi Mat. Nauk, 2010, vol. 65, no. 2, pp. 71–132 [Russian Math. Surveys, 2010, vol. 65, no. 2, pp. 259–318].
5. 5.
Grammel, R., The Gyroscope: Its Theory and Applications, Berlin: Springer, 1950.Google Scholar
6. 6.
Rumyantsev, V.V., Stability of Permanent Rotations of a Heavy Rigid Body, Prikl. Mat. Mekh., 1956, vol. 20, no. 1, pp. 51–66 (Russian).
7. 7.
Schiehlen, W.O. and Weber, H. I., On the Stability of Staude’s Permanent Rotations of a Gyroscope with Damping, Ingenieur-Archiv, 1977, vol. 46, no. 5, pp. 281–292.
8. 8.
Bilimovich, A. D., Equations of the Motion of a Heavy Rigid Body about a Fixed Point, in Collection of Papers Devoted to Prof. G.K. Suslov, Kiev, 1911, pp. 23–74 (Russian).Google Scholar
9. 9.
Hess, W., Über die Eulerschen Bewegungsgleichungen und eine neue particuläre Lösung des Problems der Bewegung eines starren schweren Körpers um einen festen Punkt, Math. Ann., 1890, vol. 37, no. 2, pp. 178-1
10. 10.
Schiff, P. A., Sur les équations du mouvement d’un solide pesant ayant un point fixe, Mat. Sb., 1904, vol. 24, no. 2, pp. 169–177 (Russian).Google Scholar
11. 11.
Stäckel, P., Die reduzierten Differenzialgleichungen der Bewegung des schweren unsymmetrischen Kreisels, Math. Ann., 1909, vol. 67, pp. 399–432.
12. 12.
Kharlamova, E. I., Reduction of the Problem of Motion of a Body with a Fixed Point, to a Single Differential Equation, Mekh. Tverd. Tela, 1969, vol. 1, pp. 107–116 (Russian).Google Scholar
13. 13.
Yehia, H.M., On the Reduction of the Order of Differential Equations of Motion of a Rigid Body about a Fixed Point, Vestn. Mosk. Univ., Ser. 1. Mat. Mekh., 1976, no. 6, pp. 76–79 (Russian).Google Scholar
14. 14.
Yehia, H.M., On the Reduction of the Equations of Motion of a Rigid Body in an Axisymmetric Field, J. Mećan. Théor. Appl., 1983, vol. 2, no. 3, pp. 451–462.
15. 15.
Yehia, H.M., On the Motion of a Rigid Body Acted upon by Potential and Gyroscopic Forces: 3. The Reduction of Order and Further Transformation, J. Mećan. Théor. Appl., 1986, vol. 5, no. 6, pp. 935–939.
16. 16.
Yehia, H.M., On the Motion of a Rigid Body Acted upon by Potential and Gyroscopic Forces: 2. A new Form of the Equations of Motion of a Multiconnected Rigid Body in an Ideal Incompressible Fluid, J. Mećan. Théor. Appl., 1986, vol. 5, no. 5, pp. 755–762.
17. 17.
Yehia, H.M., Qualitative Investigations of Plane and Similar Motions of a Solid about a Fixed Point, Prikl. Mat. Mekh., 1981, vol. 45, no. 4, pp. 618–623 [J. Appl. Math. Mech., 1981, vol. 45, no. 4, pp. 454–458].Google Scholar
18. 18.
Yehia, H. M., On the Stability of Plane Motions of a Rigid Body about a Fixed Point in a Newtonian Field of Force, Vestn. Mosk. Univ., Ser. 1. Mat. Mekh., 1981, no. 4. [Mosc. Univ. Mech. Bull., 1981, vol. 36, nos. 3–4, pp. 41–44].Google Scholar
19. 19.
Yehia, H. M., On the Stability of Plane Motions of a Heavy Rigid Body about a Fixed Point, ZAMM Z. Angew. Math. Mech., 1987, vol. 67, no. 12, pp. 641–648.
20. 20.
Tkhai, V. and Shvygin, A. L., On Stability of Rotations around a Horizontal Axis of a Heavy Rigid Body with One Fixed Point, in Problems of Investigation of Stability and Stabilization of Motion: Part 2, V. Ramyantsev (Ed.), Moscow: A.A.Dorodnitsyn Computing Centre of the Russian Academy of Science, 2000, pp. 149–157 (Russian).Google Scholar
21. 21.
Dovbysh, S. A., Oscillational Properties of Plane Motions in the Dynamics of a Symmetric Rigid Body, Mekh. Tverd. Tela, 1990, no. 4, pp. 11–19 (Russian).Google Scholar
22. 22.
Markeev, A.P., Plane and Quasi-Plane Rotations of a Heavy Rigid Body about a Fixed Point, Izv. AN SSSR. Mekh. Tverd. Tela, 1988, vol. 23, no. 4, pp. 29–36 (Russian).Google Scholar
23. 23.
Markeev, A.P., The Stability of the Plane Motions of a Rigid Body in the Kovalevskaya Case, Prikl. Mat. Mekh., 2001, vol. 65, no. 1, pp. 51–58 [J. Appl. Math. Mech., 2001, vol. 65, no. 1, pp. 47–54].
24. 24.
Markeev A.P., The Pendulum-Like Motions of a Rigid Body in the Goryachev-Chaplygin Case, Prikl. Mat. Mekh., 2004, vol. 68, no. 2, pp. 282–293 [J. Appl. Math. Mech., 2004, vol. 68, no. 2, pp. 249–258].
25. 25.
Bardin, B. S., Stability Problem for Pendulum-Type Motions of a Rigid Body in the Goryachev-Chaplygin Case, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2007, no. 2, pp. 14–21 [Mech. Solids, 2007, vol. 42, no. 2, pp. 177–183].Google Scholar
26. 26.
Bardin, B. S., On the Orbital Stability of Pendulum-LikeMotions of a Rigid Body in the Bobylev-Steklov Case, Regul. Chaotic Dyn., 2010, vol. 15, no. 6, pp. 702–714.
27. 27.
Bardin, B. S., Rudenko, T. V., and Savin, A. A., On the Orbital Stability of Planar Periodic Motions of a Rigid Body in the Bobylev-Steklov Case, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 533–546.
28. 28.
Bardin, B. S. and Savin, A. A., On the Orbital Stability of Pendulum-Like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point, Regul. Chaotic Dyn., 2012, vol. 17, nos. 3–4, pp. 243–257.
29. 29.
Grioli, G., Esistenza e determinazione delle precessioni regolari dinamicamente possibili per un solido pesante asimmetrico, Ann. Mat. Pura Appl., 1947, vol. 4, pp. 271–281.
30. 30.
Bryum, A. Z., Investigation of the Regular Precession of a Heavy Rigid Body with a Fixed Point by Lyapunov’s First Method, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 1987, no. 19, pp. 68–72 (Russian).Google Scholar
31. 31.
Mozalevskaya, G.V., Kharlamov, A.P., and Kharlamova, E. I., Drift of G.Grioli’s Gyroscope, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 1992, no. 24, pp. 15–25.Google Scholar
32. 32.
Tkhai, V. N., The Stability of Regular Grioli Precessions, Prikl. Mat. Mekh., 2000, vol. 64, no. 5, pp. 848–857 [J. Appl. Math. Mech., 2000, vol. 64, no. 5, pp. 811–819].
33. 33.
Markeev, A.P., On Stability of Regular Precessions of a Non-Symmetric Gyroscope, Regul. Chaotic Dyn., 2003, vol. 8, no. 2, pp. 297–304.
34. 34.
Markeev, A.P., The Stability of the Grioli Precession, Prikl. Mat. Mekh., 2003, vol. 67, no. 4, pp. 556–571 [J. Appl. Math. Mech., 2003, vol. 67, no. 4, pp. 497–510].
35. 35.
Markeev, A.P., On the Steklov Case in Rigid Body Dynamics, Regul. Chaotic Dyn., 2005, vol. 10, no. 1, pp. 81–93.
36. 36.
Malkin, I.G., Theory of Stability of Motion, Moscow: Gostekhizdat, 1966 (Russian).
37. 37.
Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G., Higher Transcendental Functions: In 2 Vols.: Based, in Part, on Notes Left by Harry Bateman, New York: McGraw-Hill, 1953.Google Scholar
38. 38.
Whittaker, E.T. and Watson, G.N., A Course of Modern Analysis, 4th ed., Cambridge: Cambridge Univ. Press, 1963.
39. 39.
Arscott, F.M., Periodic Differential Equations, Oxford: Pergamon Press, 1964.
40. 40.
Ince, E. L., The Periodic Lamé Functions, Proc. Roy. Soc. Edinburgh, 1940, vol. 60, no. 1, pp. 47–63.