Regular and Chaotic Dynamics

, Volume 18, Issue 1–2, pp 118–125 | Cite as

Normal and hemiparetic walking



The idea of a model-based control of rehabilitation for hemiparetic patients requires efficient models of human walking, healthy walking as well as hemiparetic walking. Such models are presented in this paper. They include 42 degrees of freedom and allow especially the evaluation of kinetic magnitudes with the goal to evaluate measures for the hardness of hemiparesis. As far as feasible, the simulations have been compared successfully with measurements, thus improving the confidence level for an application in clinical practice. The paper is mainly based on the dissertation [19].


human walking normal and hemiparetic walking multibody system approach 

MSC2010 numbers

70-XX 92-XX 34-XX 37-XX 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roth, E. J., Merbitz, C., Mroczek, K., Dugan, S.A., and Suh, W. W., Hemiplegic Gait: Relationships between Walking Speed and Other Temporal Parameters, Am. J. Phys. Med. Rehabil., 1997, vol. 76, no. 2, pp. 128–133.CrossRefGoogle Scholar
  2. 2.
    Wolf, D., Hartmann, E., Heller, S., Hoch, G., and Koenig, E., 3D-Analyse des hemiparetischen Gangbildes mit OPTOTRAK am Beispiel einer Verlaufsdokumentation, Aktuelle Neurologie, 1998, vol. 25, p. 197.Google Scholar
  3. 3.
    Shiavi, R., Bugle, H. J., and Limbird, T., Electromyographic Gait Assessment: P. 2. Preliminary Assessment of Hemiparetic Synergy Patterns, J. Rehabil. Res. Dev., 1987, vol. 24, no. 2, pp. 24–30.Google Scholar
  4. 4.
    Olney, S. J. and Richard, C. L., Hemiparetic Gait Following Stroke: P. 1. Characteristics, Gait Posture, 1996, vol. 4, pp. 136–148.CrossRefGoogle Scholar
  5. 5.
    Gage, J.R. and Koop, S.E., Clinical Gait Analysis: Application to Menagement of Cerebral Palsy, in Three Dimensional Analysis of Human Movement, P. Allard, I.A. F. Stokes, J.-P. Blanchi (Eds.), Champaign, IL: Human Kinetics, 1994, pp. 349–362.Google Scholar
  6. 6.
    Pedotti, A., Future Perspectives in Europe for Quantitative Analysis of Movement, in Gait Analysis: State of the Art of Measuring Systems and Their Importance for Prosthetic and Orthotic Technology, U. Boenick, M. Näder, C. Mainke (Eds.), Duderstadt: Mecke, 1990, pp. 322–332.Google Scholar
  7. 7.
    Olney, S. J. and Richard, C. L., Hemiparetic Gait Following Stroke: P. 2. Recovery and Physical Therapy, Gait Posture, 1996, vol. 4, pp. 149–162.CrossRefGoogle Scholar
  8. 8.
    Pfeiffer, F., Roboterdynamik, Stuttgart: Teubner, 1987.MATHGoogle Scholar
  9. 9.
    Lutzenberger, C. and Pfeiffer, F., A Three-Dimensional Model of the Human Locomotor Apparatus for Analysis of Hemiplegic Gait, in Proc. of Internat. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBS’98), Hongkong, 1998, pp. 2407–2410.Google Scholar
  10. 10.
    Apkarian, J., Naumann, S., and Cairns, B., A Three-Dimensional Kinematic and Dynamic Model of the Lower Limb, J. Biomech., 1989, vol. 22, pp. 143–155.CrossRefGoogle Scholar
  11. 11.
    Pearsall, D. J., Reid, J. G., and Ross, R., Inertial Properties of the Human Trunk of Males Determined from Magnetic Resonance Imaging, Ann. Biomed. Eng., 1994, vol. 22, pp. 692–706.CrossRefGoogle Scholar
  12. 12.
    Zatsiorsky, V. and Seluyanov, V., The Mass and Inertia Characteristics of the Main Segments of the Human Body, in Biomechanics VIII-B, H. Matsu, K. Kobayashi (Eds.), Champaign, IL: Human Kinetics, 1983, pp. 1152–1159.Google Scholar
  13. 13.
    Pfeiffer, F., Einführung in die Dynamik, Stuttgart: Teubner, 1992.MATHCrossRefGoogle Scholar
  14. 14.
    Eltze, J., Biologisch orientierte Entwicklung einer sechsbeinigen Laufmaschine, VDI Fortschrittberichte, Reihe 17, Nr. 110, Düsseldorf: VDI, 1994.Google Scholar
  15. 15.
    Bremer, H., Dynamik und Regelung mechanischer Systeme, Stuttgart: Teubner, 1988.MATHCrossRefGoogle Scholar
  16. 16.
    Winter, D.A., The Biomechanics and Motor Control and Human Gait, Waterloo: Univ. of Waterloo Press, 1987.Google Scholar
  17. 17.
    Koopman, B., Grootetnboer, H. J., and de Jongh, H. J., An Inverse Dynamics Model for the Analysis, Reconstruction and Prediction of Bipedal Walking, J. Biomech., 1995, vol. 28, pp. 1369–1376.CrossRefGoogle Scholar
  18. 18.
    Marhefka, D.W. and Orin, D.E., XAnimate, program and documentation under
  19. 19.
    Lutzenberger, C., Dynamik des menschlichen Ganges, PhD Dissertation, TU München, Lehrstuhl für Angewandte Mechanik, 2001.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Lehrstuhl fuer Angewandte MechanikGarchingGermany
  2. 2.Neurologische Klinik Bad AiblingBad AiblingGermany

Personalised recommendations