Regular and Chaotic Dynamics

, Volume 18, Issue 1–2, pp 63–74 | Cite as

An amphibious vibration-driven microrobot with a piezoelectric actuator

  • Felix Becker
  • Klaus Zimmermann
  • Tatiana Volkova
  • Vladimir T. Minchenya
Article

Abstract

This article concerns microrobots for solid and liquid environments. A short overview of microrobotics, suitable actuators and energy systems is given. The principles of terrestrial and aquatic locomotion are discussed and illustrated with examples from the literature on robotics. The state of the art with a focus on piezo microrobots for solid and liquid environments is presented.

Furthermore, we report an amphibious prototype, which can move on flat solid ground and on the free surface of water. The design, characteristic parameters and experiments on locomotion are described. The robot is characterized by a light and simple design and can perform twodimensional locomotion in different environments with a speed up to 30 mm/s. An analytical model to predict the maximum carrying capacity of the robot on water is solved numerically.

Keywords

microrobot piezo actuator amphibious system resonant vibration locomotion 

MSC2010 numbers

70B15 76-05 74-05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IFToMM Dictionary: Terrestrial and Aquatic Locomotion, http://www.iftomm.3me.tudelft.nl/1031_2057/frames.html (accessed: 22/09/2012).
  2. 2.
    Steigenberger, J., Some Theory Towards a Stringent Definition of “Locomotion”, Multibody Syst. Dyn., 2011, vol. 26, no. 1, pp. 81–90.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Crossley, V., Mosier, E., and Osmanbeyoglu, H.U., Midterm Progress on a Piezo-Actuated Deformable Spherical Robot, http://vcrossley.com/rolling_robot_midterm_4_5_2006.pdf (Apr, 2006).Google Scholar
  4. 4.
    Song, Y. S. and Sitti, M., Surface-Tension-Driven Biologically Inspired Water Strider Robots: Theory and Experiments, IEEE Trans. on Robotics, 2007, vol. 23, no. 3, pp. 578–589.CrossRefGoogle Scholar
  5. 5.
    Montane, E., Bota, S.A., Lopez-Sanchez, J., Miribel-Catala, P., Puig-Vidal, M., and Samitier, J., Smart Power Integrated Circuit for Piezoceramic-Based Microrobot, in Proc. of the 27th European Solid-State Circuits Conference (ESSCIRC’2001), 2001, pp. 249–252.Google Scholar
  6. 6.
    Steltz, E., Seeman, M., Avadhanula, S., and Fearing, R. S., Power Electronics Design Choice for Piezoelectric Microrobots, in Proc. of the IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems, 2006, pp. 1322–1328.Google Scholar
  7. 7.
    Karpelson, M., Wei, G.-Y., and Wood, R. J., Driving High Voltage Piezoelectric Actuators in Microrobotic Applications, Sensor. Actuat. A Phys., 2012, vol. 176, pp. 78–89.CrossRefGoogle Scholar
  8. 8.
    Becker, F., Zimmermann, K., Minchenya, V.T., and Volkova, T., Piezo-Driven Micro Robots for Different Environments: Prototypes and Experiments, in ROBOTIK 2012: 7th German Conf. on Robotics, 2012, pp. 41–45.Google Scholar
  9. 9.
    Firebaugh, S. L., Piepmeier, J.A., and McGray, C.D., Soccer at the Microscale: Small Robots with Big Impact, in Robot Soccer, V. Papic (Ed.), Vukova (Croatia): InTech, 2010, pp. 285–310.Google Scholar
  10. 10.
    Zesch, W., Büchi, R., Codourey, A., and Siegwart, R., Inertial Drives for Micro- and Nanorobots: Two Novel Mechanisms, in Proc. SPIE: Microrobotics and Micromechanical Systems, 1995, L.E. Parker (Ed.), vol. 2593, pp. 80–88.CrossRefGoogle Scholar
  11. 11.
    Chernousko, F. L., On the Optimal Motion of a Body with an Internal Mass in a Resistive Medium, J. Vib. Control, 2008, vol. 14, nos. 1–2, pp. 197–208.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Li, H., Furuta, K., and Chernousko, F. L., Motion Generation of the Capsubot Using Internal Force and Static Friction, in Proc. of the 45th IEEE Conference on Decision and Control, 2006, pp. 6575–6580.CrossRefGoogle Scholar
  13. 13.
    Bolotnik, N.N. and Figurina, T.Y., Vibration-Driven Systems with Movable Internal Masses: Control and Optimization, in Portrait — Faculty of Mechanical Engineering: Proc. of the 53rd IWK, 2008, pp. 31–32.Google Scholar
  14. 14.
    Guo, Sh., Li, M., Shi, L., and Mao, Sh., A Smart Actuator-Based Underwater Microrobot with Two Motion Attitudes, in Proc. of the Internat. Conf. on Mechatronics and Automation (ICMA), 2012, pp. 1675–1680.Google Scholar
  15. 15.
    Hu, D. L., Prakash, M., Chang, B., and Bush, J.W.M., Water-Walking Devices, Exp. Fluids, 2007, vol. 43, no. 5, pp. 769–778.CrossRefGoogle Scholar
  16. 16.
    Li, F., Bonsignori, G., Scarfogliero, U., Chen, D., Stefanini, C., Liu, W., Dario, P., and Fu, X., Jumping Mini-Robot with Bio-Inspired Legs, in Proc. of the IEEE Internat. Conf. on Robotics and Biomimetics, 2008 (ROBIO’2008), pp. 933–938.Google Scholar
  17. 17.
    Zufferey, J.-C., Klaptocz, A., Beyeler, A., Nicoud, J.-D., and Floreano, D., A 10-Gram Microflyer for Vision-Based Indoor Navigation, in Proc. of the IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems, 2006, pp. 3267–3272.Google Scholar
  18. 18.
    Hines, L. L., Arabagi, V., and Sitti, M., Free Flight Simulations and Pitch and Roll Control Experiments of a Sub-Gram Flapping-Flight Micro Aerial Vehicle, in Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA), 2011, pp. 1–7.Google Scholar
  19. 19.
    Bergbreiter, S. E., Autonomous Jumping Microrobot: PhD Thesis, Berkeley, Univ. of California, 2007.Google Scholar
  20. 20.
    Zufferey, J.-C., Bio-Inspired Flying Robots, Lausanne: EPFL Press, 2008.CrossRefGoogle Scholar
  21. 21.
    Abbott, J. J., Nagy, Z., Beyeler, F., and Nelson, B. J., Robotics in the Small: P. 1. Microbotics, IEEE Robot. Autom. Mag., 2007, vol. 14, no. 2, pp. 92–103.CrossRefGoogle Scholar
  22. 22.
    Dong, L. and Nelson, B. J., Tutorial: Robotics in the Small: P. 2. Nanorobotics, IEEE Robot. Autom. Mag., 2007, vol. 14, no. 3, pp. 111–121.MATHCrossRefGoogle Scholar
  23. 23.
    Gradetsky, V.G., Knyazkov, M.M., Fomin, L.F., and Chashchukhin, V.G., Miniature Robot Mechanics, Moscow: Nauka, 2010 (Russian).Google Scholar
  24. 24.
    Ostrowski, J., Burdick, J., Lewis, A. D., and Murray, R. M., The Mechanics of Undulatory Locomotion: The Mixed Kinematic and Dynamic Case, in Proc. of the IEEE Internat. Conf. on Robotics and Automation, 1995: Vol. 2, pp. 1945–1951.Google Scholar
  25. 25.
    Becker, F., Minchenya, V., Zimmermann, K., and Zeidis, I., Modeling and Dynamical Simulation of Vibration-Driven Robots, in 56th Internat. Scientific Colloquium “Innovation in Mechanical Engineering: Shaping the Future”, Ilmenau: Univ.-Bibliothek, ilmedia, 2011 (http://www.dbthueringen.de/servlets/DocumentServlet?id=19667).Google Scholar
  26. 26.
    Bush, J.W.M. and Hu, D. L., Walking on Water: Biolocomotion at the Interface, Annu. Rev. Fluid Mech., 2006, vol. 36, pp. 339–369.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Asano, M., Matsuoka, T., Okamoto, H., Mitsuishi, S., and Matsui, T., Study for Micro Mobile Machine with Piezoelectric Driving Force Actuator, in Proc. of the IEEE Internat. Conf. on Robotics and Automation, 1995: Vol. 3, pp. 2955–2960.Google Scholar
  28. 28.
    Fuchiwaki, O. and Aoyama, H., Piezo Based Micro Robots for Microscope Instrument, in Proc. of the 6th Internat. Conf. on Mechatronics Technology (Fukuoka, Japan, 2002), pp. 499–504.Google Scholar
  29. 29.
    Misaki, D. and Aoyama, H., Insect Based Automatic Precise Navigation of Piezo Driven Micro Robots for Artificial Insemination, in Proc. of the IEEE Internat. Conf. on Robotics and Biomimetics, 2008 (ROBIO’2008), pp. 961–966.Google Scholar
  30. 30.
    Eigoli, A.K. and Vossoughi, G.R., Dynamic Modeling of Stick-Slip Motion in a Legged, Piezoelectric Driven Microrobot, Int. J. Adv. Robotic Syst., 2010, vol. 7, no. 3, pp. 201–208.Google Scholar
  31. 31.
    Simu, U., Piezoactuators for Miniature Robots: Doctoral dissertation, Uppsala, Uppsala Univ., 2002.Google Scholar
  32. 32.
    Fahlbusch, S., Fatikow, S., Seyfried, J., and Buerkle, A., Flexible Microrobotic System MINIMAN: Design, Actuation Principle and Control, in Proc. of the Conf. on Advanced Intelligent Mechatronics (AIM’ 99), Atlanta, 1999, pp. 156–161.Google Scholar
  33. 33.
    Baisch, A.T., Heimlich, Ch., Karpelson, M., and Wood, R. J., HAMR3: An Autonomous 1.7g Ambulatory Robot, in Proc. of the IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS), 2011, pp. 5073–5079.Google Scholar
  34. 34.
    Estaña, R. and Woern, H., The MiCRoN Robot Project, in Autonome Mobile Systeme 2007, K. Berns, T. Luksch (Eds.), Berlin: Springer, 2007, pp. 334–340.CrossRefGoogle Scholar
  35. 35.
  36. 36.
    I-SWARM Scientific Publications, http://www.i-swarm.org/MainPage/Publications/Pub_Scientific1.htm (accessed: 22/09/2012).
  37. 37.
    Rochdi, K. and Dembele, S., Static Behavior of a Piezoelectric Micro Robot, in Proc. of the 1st IEEE Conference on Nanotechnology (IEEE-NANO 2001), pp. 180–184.Google Scholar
  38. 38.
    Becker, F., Minchenya, V., Zimmermann, K., and Zeidis, I., Single Piezo Actuator Driven Micro Robot for 2-Dimensional Locomotion, in Micromechanics and Microactuators: Proc. of MAMM’10 (Aachen, Germany, May 27–29, 2010), G. K. Ananthasuresh, B. J. Corves, V. Petuya (Eds.), Mechanisms and Machine Science, vol. 2, Heidelberg: Springer, 2012, pp. 1–10.CrossRefGoogle Scholar
  39. 39.
    Li, W., Li, J., Hu, H., Li, M., and Sun, L., Analysis and Experiment of Stick-Slip Motion Principle in a Legged Microrobot, in Proc. of the 6th Internat. Forum on Strategic Technology (IFOST), 2011: Vol. 1, pp. 328–332.Google Scholar
  40. 40.
    Edeler, C., Dynamic-Mechanical Analysis of Piezoactuators for Mobile Nanorobots, in Proc. of the 12th Internat. Conf. on New Actuators (Bremen, Germany, 2010), pp. 1003–1006.Google Scholar
  41. 41.
    Shin, B. H. and Lee, S.-Y., Micro Mobile Robots Using Electromagnetic Oscillatory Actuator, in Proc. of the 4th IEEE/RAS/EMBS Internat. Conf. on Biomedical Robotics and Biomechatronics (BioRob), 2012, pp. 575–580.CrossRefGoogle Scholar
  42. 42.
    Yan, G., Lu, Q., Ding, G., and Yan, D., The prototype of a Piezoelectric Medical Microrobot, in Proc. of the Internat. Symp. on Micromechatronics and Human Science (MHS’2002), pp. 73–77.Google Scholar
  43. 43.
    Park, H., Kim, B., Park, J.-O., and Yoon, S.-J., A Crawling Based Locomotive Mechanism Using a Tiny Ultrasonic Linear Actuator (TULA), in Proc. of the 39th Internat. Symp. on Robotics (Seoul, Korea, 2008), pp. 85–90.Google Scholar
  44. 44.
    Weise, F., Entwurf und Konstruktion einer neuartigen Aktuatorik für ein biomimetisches Bewegungssystems: Diploma thesis, Ilmenau: Ilmenau Univ. of Technology, 2002.Google Scholar
  45. 45.
    Zimmermann, K., Zeidis, I., and Behn, C., Mechanics of Terrestrial Locomotion, Berlin: Springer, 2009.MATHGoogle Scholar
  46. 46.
    Rodewald, B. and Schlichting, J., Wenn Wasser schlüpfrig und Luft klebrig wird... Praxis der Naturwissenschaften. Physik, 1988, vol. 37, no. 5, pp. 22–32.Google Scholar
  47. 47.
    Nachtigall, W., Zur Bedeutung der Reynoldszahl und der damit zusammenhängenden strömungsmechanischen Phänomene in der Schwimmphysiologie und Flugbiophysik, in Physiology of Movement — Biomechanics: Symposium (Mainz, 1976), W. Nachtigall (Ed.), Fortschr. Zool., vol. 24, Stuttgart, 1977, pp. 13–56.Google Scholar
  48. 48.
    Kosa, G., Shoham, M., and Zaaroor, M., Propulsion of a Swimming Micro Medical Robot, in Proc. of the 2005 IEEE Internat. Conf. on Robotics and Automation (ICRA’2005), pp. 1327–1331.Google Scholar
  49. 49.
    Guo, Sh., Okuda, Y., and Asaka, K., Hybrid Type of Underwater Micro Biped Robot with Walking and Swimming Motions, in Proc. of the IEEE Internat. Conf. Mechatronics and Automation, 2005: Vol. 3, pp. 1604–1609.Google Scholar
  50. 50.
    Guo, Sh., Ge, Ya., Li, L., and Liu, Sh., Underwater Swimming Micro Robot Using IPMC Actuator, in Proc. of the IEEE Internat. Conf. on Mechatronics and Automation, 2006, pp. 249–254.Google Scholar
  51. 51.
    Zhang, Yo. and Liu, G., Design, Analysis and Experiments of a Wireless Swimming Micro Robot, in Proc. of the IEEE Internat. Conf. on Mechatronics and Automation, 2005: Vol. 2, pp. 946–951.Google Scholar
  52. 52.
    Yun, S. S. and Sitti, M., STRIDE: A Highly Maneuverable and Non-Tethered Water Strider Robot, in Proc. of the IEEE Internat. Conf. on Robotics and Automation, 2007, pp. 980–984.Google Scholar
  53. 53.
    Takonobu, H., Kodaira, K., and Takeda, H., Water Strider’s Muscle Arrangement-Based Robot, in Proc. of the IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS’2005), pp. 1754–1759.Google Scholar
  54. 54.
    Gao, T., Cao, Ju., Gao, F., and Zhu, D., The Research of a Bionic Robot That Can Walk on Water Surface Based on Water Strider, in Proc. of the Internat. Technology and Innovation Conference (ITIC’2006), pp. 2180–2185.Google Scholar
  55. 55.
    Rinoshika, A., Vortical Dynamics in the Wake of Water Strider Locomotion, J. Vis., 2012, vol. 15, pp. 145–153.CrossRefGoogle Scholar
  56. 56.
    Wu, L., Yang, G., and Gui, X., Developing Strategy Based on Discussing of the State of the Art for a New Water Strider Robot, in 2nd Internat. Conf. on Intelligent System Design and Engineering Application (ISDEA’2012), pp. 674–678.Google Scholar
  57. 57.
    Zhao, J., Zhang, X., Chen, N., and Pan, Q., Why Superhydrophobicity Is Crucial for a Water-Jumping Microrobot? Experimental and Theoretical Investigations, ACS Appl. Mater. Interfaces, 2012, vol. 4, pp. 3706–3711.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • Felix Becker
    • 1
  • Klaus Zimmermann
    • 1
  • Tatiana Volkova
    • 2
  • Vladimir T. Minchenya
    • 3
  1. 1.Ilmenau University of TechnologyIlmenauGermany
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Belarusian National Technical UniversityMinskBelarus

Personalised recommendations