Skip to main content
Log in

Integrable variational equations of non-integrable systems

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

Paper is devoted to the solvability analysis of variational equations obtained by linearization of the Euler-Poisson equations for the symmetric rigid body with a fixed point on the equatorial plain. In this case Euler-Poisson equations have two pendulum like particular solutions. Symmetric heavy top is integrable only in four famous cases. In this paper is shown that a family of cases can be distinguished such that Euler-Poisson equations are not integrable but variational equations along particular solutions are solvable. The connection of this result with analysis made in XIX century by R. Liouville is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V. I., Mathematical Methods of Classical Mechanics, Grad. Texts in Math., vol. 60, New York: Springer, 1978.

    MATH  Google Scholar 

  2. Audin, M., Spinning Tops: A Course on Integrable Systems, Cambridge Stud. Adv. Math., vol. 51, Cambridge: Cambridge Univ. Press, 1996.

    MATH  Google Scholar 

  3. Bardin, B. S., On the Orbital Stability of Pendulum-like Motions of a Rigid Body in the Bobylev-Steklov Case, Regul. Chaotic Dyn., 2010, vol. 15, no. 6, pp. 704–716.

    Article  MathSciNet  MATH  Google Scholar 

  4. Belokolos, E.D. and Enolskii, V. Z., Reduction of Abelian Functions and Algebraically Integrable Systems: II, J. Math. Sci. (N. Y.), 2002, vol. 108, no. 3, pp. 295–374.

    Article  MathSciNet  MATH  Google Scholar 

  5. Burger, R., Labahn, G., and van Hoeij, M., Closed form Solutions of Linear ODEs Having Elliptic Function Coefficients, in ISSAC 2004, New York: ACM, 2004, pp 58–64.

    Chapter  Google Scholar 

  6. Chittenden, J.B., A Presentation of the Theory of Hermite’s Form of Lamé’s Equation, Ph. D. Thesis, Königsberg Albertus Univ., Leipzig, 1893.

    Google Scholar 

  7. Dokshevich, A. I., Closed-form Solutions of the Euler-Poisson Equations, Kiev: Naukova Dumka, 1992 (Russian).

    Google Scholar 

  8. Duval, A. and Loday-Richaud, M., Kovačič’s Algorithm and Its Application to Some Families of Special Functions, Appl. Algebra Engrg. Comm. Comput., 1992, vol. 3, no. 3, pp. 211–246.

    Article  MathSciNet  MATH  Google Scholar 

  9. Goryachev, D. I., New Integrable Cases of Integrability of the Euler Dynamical Equations, Warsaw Univ. Izv., 1910 (Russian).

  10. Halphen, G. H., Mémoire sur la réduction des équations différentielles linéaires aux formes intégrales, Mem. Prés. l’Acad. de Sci. de France, 1884, vol. 28, pp. 1–300.

    Google Scholar 

  11. Hermite, C., OEuvres de Charles Hermite: Vol. 3, Paris: Gauthier-Villars, 1912.

    Google Scholar 

  12. Ince, E. L., Ordinary Differential Equations, New York: Dover, 1944.

    MATH  Google Scholar 

  13. Jurdjevic, V., Integrable Hamiltonian Systems on Lie Groups: Kowalewski Type, Ann. of Math. (2), 1999, vol. 150, no. 2, pp. 605–644.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kimura, T., On Riemann’s Equations Which are Solvable by Quadratures, Funkcial. Ekvac., 1969/1970, vol. 12, pp. 269–281.

    MathSciNet  MATH  Google Scholar 

  15. Kovacic, J. J., An Algorithm for Solving Second Order Linear Homogeneous Differential Equations, J. Symbolic Comput., 1986, vol. 2, no. 1, pp. 3–43.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kowalevski, S., Sur le problème de la rotation d’un corps solide autour d’un point fixe, Acta Math., 1888, vol. 12, pp. 177–232.

    Article  MathSciNet  Google Scholar 

  17. Kowalevski, S., Sur une propriété du systéme d’équations différentielles qui définit la rotation d’un corps solide autour d’un point fixe, Acta Math., 1890, vol. 14, pp. 81–93.

    Article  MathSciNet  MATH  Google Scholar 

  18. Lagrange, J. L., Mécanique analytique: Vol. 2, Paris: Chez La Veuve Desaint, Libraire, 1788.

    Google Scholar 

  19. Liouville, R., Sur le mouvement d’un corps solide pesant suspendu par l’un de ses points, Acta Math., 1897, vol. 20, no. 1, pp. 239–284.

    Article  MathSciNet  MATH  Google Scholar 

  20. Maciejewski, A. J., Strelcyn, J.-M., and Szydłowski, M., Nonintegrability of Bianchi VIII Hamiltonian System, J. Math. Phys., 2001, vol. 42, no. 4, pp. 1728–1743.

    Article  MathSciNet  MATH  Google Scholar 

  21. Markeev, A.P., On the Stability of the Planar Motions of a Rigid Body in the Kovalevskaya Case, Prikl. Mat. Mekh., 2001, vol. 65, no. 1, pp. 51–58 [J. Appl. Math. Mech., 2001, vol. 65, no. 1, pp. 47–54].

    MathSciNet  Google Scholar 

  22. Markeev, A. P., On the Identity Resonance in a Particular Case of the Problem of Stability of Periodic Motions of a Rigid Body, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2003, vol. 3, pp. 32–37 Mech. Solids, 2003, vol. 38, no. 3, pp. 22–26].

    Google Scholar 

  23. Markeev, A. P., Medvedev, S.V., and Chekhovskaya, T. N., On the Stability of Pendulum Type Motions of Rigid Body in the Kovalevskaya Case, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2003, vol. 1, pp. 3–9 [Mech. Solids, 2003, vol. 38, no. 1, pp. 1–6].

    Google Scholar 

  24. Markeev, A.P., Pendulum-like Motions of a Rigid Body in the Goryachev-Chaplygin Case, Prikl. Mat. Mekh., 2004, vol. 68, no. 2, pp. 282–293 [J. Appl. Math. Mech., 2004, vol. 68, no. 2, pp. 249–258].

    MathSciNet  MATH  Google Scholar 

  25. Markeev, A.P., Stability of Motion of a Rigid Body in the Steklov Case, Dokl. Akad. Nauk, 2004, vol. 398, no. 5, pp. 620–624 (Russian).

    Google Scholar 

  26. Markeyev, A. P. Motion of a Rigid Body with a Single Fixed Point in the Steklov Case, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2005, vol. 1, pp. 20–33 [Mech. Solids, 2005, vol. 40, no. 1, pp. 14–25].

    Google Scholar 

  27. Markeev, A.P., On the Steklov Case in Rigid Body Dynamics, Regul. Chaotic Dyn., 2005, vol. 10, no. 1, pp. 81–93.

    Article  MathSciNet  MATH  Google Scholar 

  28. Marsden, J. E. and Ratiu, T. S., Introduction to Mechanics and Symmetry, Texts Appl. Math., vol. 17, New York: Springer, 1994.

    Book  MATH  Google Scholar 

  29. Morales Ruiz, J. J., Differential Galois Theory and Non-integrability of Hamiltonian Systems, Progr. Math., vol. 179, Boston,MA: Birkhäuser, 1999.

    Book  MATH  Google Scholar 

  30. Whittaker, E.T., A Treatise on the Analytical Dynamics of Particle and Rigid Bodies With an Introduction to the Problem of Three Bodies, 4th ed., London: Cambridge Univ. Press, 1965.

    Google Scholar 

  31. Whittaker, E.T. and Watson, G.N., A Course of Modern Analysis. London: Cambridge Univ. Press, 1935.

    Google Scholar 

  32. Ziglin, S. L., Branching of Solutions and the Nonexistence of First Integrals in Hamiltonian Mechanics: 2, Funktsional. Anal. i Prilozhen., 1983, vol. 17, no. 1, pp. 8–23 [Funct. Anal. Appl., 1983, vol. 17, no. 1, pp. 6–17].

    Article  MathSciNet  Google Scholar 

  33. Ziglin, S. L., On the Absence of a Real-analytic First Integral in Some Problems of Dynamics, Funktsional. Anal. i Prilozhen., 1997, vol. 31, no. 1, pp. 3–11 [Funct. Anal. Appl., 1997, vol. 31, no. 1, pp. 3–9].

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej J. Maciejewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maciejewski, A.J., Przybylska, M. Integrable variational equations of non-integrable systems. Regul. Chaot. Dyn. 17, 337–358 (2012). https://doi.org/10.1134/S1560354712030094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354712030094

MSC2010 numbers

Keywords

Navigation