Regular and Chaotic Dynamics

, Volume 16, Issue 1–2, pp 79–89 | Cite as

New directions in algebraic dynamical systems



The logarithmic Mahler measure of certain multivariate polynomials occurs frequently as the entropy or the free energy of solvable lattice models (especially dimer models). It is also known that the entropy of an algebraic dynamical system is the logarithmic Mahler measure of the defining polynomial. The connection between the lattice models and the algebraic dynamical systems is still rather mysterious.


Dimer matchings domino tilings Mahler measure algebraic dynamics homoclinic points 

MSC2010 numbers

37A35 28D20 31C05 60J45 82B05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kasteleyn, P.W., The Statistics of Dimers on a Lattice, Physica, 1961, vol. 27, pp. 1209–1225.CrossRefGoogle Scholar
  2. 2.
    Temperley, H.N.V. and Fisher, M.E., Dimer Problem in Statistical Mechanics—an Exact Result, Philos. Mag (8)., 1961, vol. 6, pp. 1061–1063.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Smyth, C.J., On Measures of Polynomials in Several Variables, Bull. Austral. Math. Soc., 1981, vol. 23, no. 1, pp. 49–63.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Smyth, C.J., An Explicit Formula for the Mahler Measure of a Family of 3-variable Polynomials, J. Théor. Nombres Bordeaux, 2002, vol. 14, no. 2, pp. 683–700.MATHMathSciNetGoogle Scholar
  5. 5.
    Kontsevich, M. and Zagier, D., Periods, Mathematics Unlimited—2001 and Beyond, Berlin: Springer, 2001, pp. 771–808.Google Scholar
  6. 6.
    Deninger, C., Deligne Periods of Mixed Motives, K-theory and the Entropy of Certain Z n-actions, J. Amer. Math. Soc., 1997, vol. 10, no. 2, pp. 259–281.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Boyd, David W., Mahler’s Measure and Special Values of L-functions, Experiment. Math., 1998, vol. 7, no. 1, pp. 37–82.MATHMathSciNetGoogle Scholar
  8. 8.
    Rodriguez-Villegas, F., Identities Between Mahler Measures, Number theory for the millennium, III (Urbana, IL, 2000), Natick, MA: A K Peters, 2002, pp. 223–229.Google Scholar
  9. 9.
    Lind, D., Schmidt, K., and Ward, T., Mahler Measure and Entropy for Commuting Automorphisms of Compact Groups, Invent. Math., 1990, vol. 101, no. 3, pp. 593–629.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Burton, R. and Pemantle, R., Local Characteristics, Entropy and Limit Theorems for Spanning Trees and Domino Tilings via Transfer-impedances, Ann. Probab., 1993, vol. 21, no. 3, pp. 1329–1371.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Onsager, L., Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Phys. Rev., 1944, vol. 65, nos 3–4, pp. 117–149.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fan, C. and Wu, F.Y., General Lattice Model of Phase Transitions, Phys. Rev. B, 1970, vol. 2, no. 3, pp. 723–733.CrossRefGoogle Scholar
  13. 13.
    Wu, F.Y., Exactly Solved Models: A Journey in Statistical Mechanics. Selected Papers with Commentaries, World Sci., 2009.Google Scholar
  14. 14.
    Temperley, H.N.V., Enumeration of Graphs on a Large Periodic Lattice, in Combinatorics (Proc. British Combinatorial Conf., Univ. Coll. Wales, Aberystwyth, 1973), London Math. Soc. Lecture Note Ser., No. 13., London: Cambridge Univ. Press,, 1974, pp. 155–159.Google Scholar
  15. 15.
    Dhar, D., Self-organized Critical State of Sandpile Automaton Models, Phys. Rev. Lett., 1990, vol. 64, no. 14, pp. 1613–1616.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Solomyak, R., On Coincidence of Entropies for Two Classes of Dynamical Systems, Ergodic Theory Dynam. Systems, 1998, vol. 18, no. 3, pp. 731–738.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Fisher, M.E., On the Dimer Solution of Planar Ising Models, J. Math. Phys., 1966, vol. 7, pp. 1776.CrossRefGoogle Scholar
  18. 18.
    Bak, P., Tang, C., and Wiesenfeld, K., Self-Organized Criticality: An Explanation of the 1/f Noise, Phys. Rev. Lett., 1987, vol. 59, no. 4, pp. 381–384.CrossRefMathSciNetGoogle Scholar
  19. 19.
    Bak, P., Tang, C., and Wiesenfeld, K., Self-organized Criticality, Phys. Rev. A, 1988, vol. 38, no. 1, pp. 364–374.CrossRefMathSciNetGoogle Scholar
  20. 20.
    Redig, F., Mathematical Aspects of the Abelian Sandpile Model, in Mathematical Statistical Physics, Lecture Notes of the Les Houches Summer School 2005 (Les Houches), Eds.: Bovier, A. et al., Amsterdam: Elsevier, 2006, pp. 657–728.Google Scholar
  21. 21.
    Einsiedler, M. and Schmidt, K., Markov Partitions and Homoclinic Points of Algebraic Zd-actions, Tr. Mat. Inst. Steklova, 1997, vol. 216, pp. 265–284 [Proc. Steklov Inst. Math., 1997, no. 1 (216), pp. 259–279].MathSciNetGoogle Scholar
  22. 22.
    Schmidt, K., Quotients of l (ℤ, ℤ) and Symbolic Covers of Toral Automorphisms, In Representation Theory, Dynamical Systems, and Asymptotic Combinatorics, Amer. Math. Soc. Transl. Ser. 2, vol. 217, Providence, RI: AMS, 2006, pp. 223–246.Google Scholar
  23. 23.
    Schmidt, K., Algebraic Coding of Expansive Group Automorphisms and Two-sided Beta-shifts, Monatsh. Math., 2000, vol. 129, no. 1, pp. 37–61.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sidorov, N., An Arithmetic Group Associated with a Pisot Unit, and its Symbolic-dynamical Representation, Acta Arith., 2002, vol. 101, no. 3, pp. 199–213.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Lind, D. and Schmidt, K., Homoclinic Points of Algebraic Z d-actions, J. Amer. Math. Soc., 1999, vol. 12, no. 4, pp. 953–980.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Schmidt, K. and Verbitskiy, E., Abelian Sandpiles and the Harmonic Model, Comm. Math. Phys., 2009, vol. 292, no. 3, pp. 721–759.CrossRefMathSciNetGoogle Scholar
  27. 27.
    Lind, D., Schmidt, K., and Verbitskiy, E., Entropy and Growth Rate of Periodic Points of Algebraic ℤd-actions, Cont. Math.,, 2010 (to appear).Google Scholar
  28. 28.
    Lind, D., Schmidt, K., and Verbitskiy, E., Atoral Polynomials and Homoclinic Points, 2010 (work in progress).Google Scholar
  29. 29.
    Kenyon, R., Lectures on Dimers, in Statistical mechanics, IAS/Park City Math. Ser., vol. 16, Providence, RI: AMS, 2009, pp. 191–230.Google Scholar
  30. 30.
    Kenyon, R. and Okounkov, A., Planar Dimers and Harnack Curves, Duke Math. J., 2006, vol. 131, no. 3, pp. 499–524.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Kenyon, R., Okounkov, A., and Sheffield, S., Dimers and Amoebae, Ann. of Math. (2), 2006, vol. 163, no. 3, pp. 1019–1056.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Bacher, R., de la Harpe, P., and Nagnibeda, T., The Lattice of Integral Flows and the Lattice of Integral Cuts on a Finite Graph, Bull. Soc. Math. France, 1997, vol. 125, no. 2, pp. 167–198.MATHMathSciNetGoogle Scholar
  33. 33.
    Baker, M. and Norine, S., Riemann-Roch and Abel-Jacobi Theory on a Finite Graph, Adv. Math., 2007, vol. 215, no. 2, pp. 766–788MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Musiker, G., The Critical Groups of a Family of Graphs and Elliptic Curves Over Finite Fields, J. Algebraic Combin., 2009, vol. 30, no. 2, pp. 255–276.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Häggström, O., A Subshift of Finite Type That is Equivalent to the Ising Model, Ergodic Theory Dynam. Systems, 1995, vol. 15, no. 3, pp. 543–556.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Mathematics InstituteUniversity of ViennaViennaAustria
  2. 2.Erwin Schrödinger Institute for Mathematical PhysicsViennaAustria
  3. 3.Mathematical InstituteUniversity of LeidenLeidenThe Netherlands
  4. 4.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations