Skip to main content
Log in

Multiparticle systems. The algebra of integrals and integrable cases

  • Jürgen Moser-80
  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

Systems of material points interacting both with one another and with an external field are considered in Euclidean space. For the case of arbitrary binary interaction depending solely on the mutual distance between the bodies, new integrals are found, which form a Galilean momentum vector. A corresponding algebra of integrals constituted by the integrals of momentum, angular momentum, and Galilean momentum is presented. Particle systems with a particle-interaction potential homogeneous of degree α = −2 are considered. The most general form of the additional integral of motion, which we term the Jacobi integral, is presented for such systems. A new nonlinear algebra of integrals including the Jacobi integral is found. A systematic description is given to a new reduction procedure and possibilities of applying it to dynamics with the aim of lowering the order of Hamiltonian systems.

Some new integrable and superintegrable systems generalizing the classical ones are also described. Certain generalizations of the Lagrangian identity for systems with a particle-interaction potential homogeneous of degree α = −2 are presented. In addition, computational experiments are used to prove the nonintegrability of the Jacobi problem on a plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacobi, C.G. J., Sur l’élimination des noeuds dans le Problème des Trois Corps, J. Reine Angew. Math., 1843, vol. 26, pp. 115–131.

    MATH  Google Scholar 

  2. Bour, E., Mémoire sur le probl`eme des trois corps, J. École Polytechn., 1856, vol. 21, pp. 35–58.

    Google Scholar 

  3. Radau, R., Sur une Transformation des équations differentielles de la dynamique, Ann. Sci. École Norm. Sup., ser. 1, 1868, vol. 5, pp. 311–375.

    MathSciNet  Google Scholar 

  4. Woronetz, P., Über das Problem der Bewegung von vier Massenpunkten unter dem Einflusse von inneren Kräften, Math. Annalen., 1907, vol. 63, pp. 387–412.

    Article  MATH  MathSciNet  Google Scholar 

  5. Cartan, E., Leçons sur les invariants intégraux, Paris: Hermann, 1922, 210 pp.

    MATH  Google Scholar 

  6. Albouy, A. and Chenciner, A., Le problème des n corps et les distances mutuelles, Invent. Math., 1998, vol. 131, p. 151–184.

    Article  MATH  MathSciNet  Google Scholar 

  7. Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Lie Algebras in Vortex Dynamics and Celestial Mechanics, IV, Regul. Chaotic Dyn., 1999, vol. 4, no. 1, pp. 23–50.

    Article  MATH  MathSciNet  Google Scholar 

  8. Borisov, A.V. and Mamaev, I.S., Poisson Structures and Lie Algebras in Hamiltonian Mechanics, vol. 7 of Library “R & C Dynamics”, Izhevsk, 1999.

  9. Lie, S., Begründung einer Invarianten-Theorie der Berührungs-Transformationen, Math. Ann., 1874, vol. 8, no. 2, pp. 215–303.

    Article  MathSciNet  Google Scholar 

  10. Polischuk E.M., Sophus Lie, Leningrad: Nauka, 1983.

    Google Scholar 

  11. Stubhaug, A., The Mathematician Sophus Lie, Berlin: Springer, 2002, 555 pp.

    MATH  Google Scholar 

  12. Sadetov, S.T., On the Regular Reduction of the n-Dimensional Problem of N + 1 Bodies to Euler-Poincare equations on the Lie Algebra sp(2N), Regul. Chaotic Dyn., 2002, vol. 7, no. 3, pp. 337–350.

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhukovskiy, N.E., On the Motion of a Material Pseudospherical Figure on a Sphere, Collected Works, Moscow-Leningrad, 1937, pp. 490–535.

  14. Gal’perin, G.A., The Concept of the Center of Mass of a System of Mass Points in Spaces of Constant Curvature, Dokl. Akad. Nauk SSSR, 1988, vol. 302, no. 5, pp. 1039–1044 [Soviet Math. Dokl. 1988, vol. 38, no. 2, pp. 367–371].

    Google Scholar 

  15. Killing, H. W., Die Mechanik in den Nicht-Euklidischen Raumformen, J. Reine Angew. Math., 1885, vol. 98, no. 1, pp. 1–48.

    MathSciNet  Google Scholar 

  16. Borisov A.V., Mamaev I.S. (Eds.), Classical dynamics in non-Eucledian spaces. Moscow-Izhevsk: Inst. komp. issled., RCD, 2004 (Russian).

    Google Scholar 

  17. Chernikov, N. A., The Relativistic Kepler Problem in the Lobachevsky Space, Acta Phys. Polon. B, 1993, vol. 24, pp. 927–950.

    MathSciNet  Google Scholar 

  18. Borisov, A.V. and Mamaev, I. S., Generalized Problem of Two and Four Newtonian Centers, Celestial Mech. Dynam. Astronom., 2005, vol. 92, no. 4, pp. 371–380.

    Article  MATH  MathSciNet  Google Scholar 

  19. Borisov, A.V. and Mamaev, I. S., The Restricted Two-Body Problem in Constant Curvature Spaces, Celestial Mech. Dynam. Astronom., 2006, vol. 96, no. 1, pp. 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  20. Borisov, A. V., Mamaev, I. S., and Kilin, A.A., Two-Body Problem on a Sphere. Reduction, Stochasticity, Periodic Orbits, Regul. Chaotic Dyn., 2004, vol. 9, no. 3, pp. 265–280.

    Article  MATH  MathSciNet  Google Scholar 

  21. Kilin, A.A., Libration Points in Spaces S2 and L2, Regul. Chaotic Dyn., 1999, vol. 4, no. 1, pp. 91–103.

    Article  MATH  MathSciNet  Google Scholar 

  22. Arnold, V.I., Kozlov, V.V., and Neishtadt, A.I. Mathematical Aspects of Classical and Celestial Mechanics, [Dynamical systems. III], Third edition. Encyclopaedia of Mathematical Sciences, vol. 3, Berlin: Springer-Verlag, 2006.

    Google Scholar 

  23. Liebmann, H., Über die Zantalbewegung in der nichteuklidiche Geometrie, Leipzig, 1903, vol. 55, pp. 146–153.

    Google Scholar 

  24. Higgs, P.W., Dynamical Symmetries in a Spherical Geometry, I, J. Phys. A: Math. Gen., 1979, vol. 12, no. 3, pp. 309–323.

    Article  MATH  MathSciNet  Google Scholar 

  25. Granovskii, Ya.I., Zhedanov, A.S., and Lutsenko, I.M., Quadratic Algebras and Dynamics in Curved Space. I. An oscillator, Teoret. Mat. Fiz., 1992, vol. 91, no. 2, pp. 207–216 [Theoret. and Math. Phys., 1992, vol. 91, no. 2, pp. 474–480]; II. The Kepler problem, Teoret. Mat. Fiz., 1992, vol. 91, no. 3, pp. 396–410 [Theoret. and Math. Phys., 1992, vol. 91, no. 3, pp. 604–612].

    MathSciNet  Google Scholar 

  26. Kozlov, V.V. and Harin, A.O., Kepler’s Problem in Constant Curvature Spaces, Celestial Mech. Dynam. Astronom., 1992, vol. 54, pp. 393–399.

    Article  MATH  MathSciNet  Google Scholar 

  27. Serret, P., Théorie nouvelle géométrique et mécanique des lignes a double courbure, Paris: Librave de Mallet-Bachelier, 1860.

    Google Scholar 

  28. Kozlov, V.V., Dynamics in spaces of constant curvature., Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1994, no. 2, pp. 28–35 [Moscow Univ. Math. Bull., 1994, vol. 49, no. 2, pp. 21–28].

  29. Kozlov, V.V., Lagrange’s Identity and Its Generalizations, Regul. Chaotic Dyn., 2008, vol. 13, no. 2, pp. 71–80.

    MathSciNet  Google Scholar 

  30. Jacobi, C.G. J., Problema trium corporum mutuis attractionibus cubis distantiarum inverse proportionalibus recta linea se moventium, Gesammelte Werke, vol. 4, Berlin: Reimer, 1886, pp. 531–539.

    Google Scholar 

  31. Jacobi, C.G. J., Theoria novi multiplicatoris systemati aequationum differentialium vulgarium applicandi, Gesammelte Werke, vol. 4, Berlin: Reimer, 1886, pp. 319–509.

    Google Scholar 

  32. Calogero, F., Solution of the One-Dimensional N-Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials, J. Math. Phys., 1971, vol. 12, pp. 419–436.

    Article  MathSciNet  Google Scholar 

  33. Moser, J., Three Integrable Hamiltonian Systems Connected with Isospectral Deformations, Surveys in applied mathematics (Proc. First Los Alamos Sympos. Math. in Natural Sci., Los Alamos, N.M., 1974), New York: Academic Press, 1976, pp. 235–258.

    Google Scholar 

  34. Olshanetsky, M.A. and Perelomov, A.M., Explicit Solution of the Calogero Model in the Classical Case and Geodesic Flows on Symmetric Spaces of Zero Curvature, Lett. Nuovo Cimento (2), 1976, vol. 16, no. 11, pp. 333–339.

    Article  MathSciNet  Google Scholar 

  35. Perelomov, A.M., Integrable Systems of Classical Mechanics and Lie Algebras, Basel: Birkhäser, 1990.

    Google Scholar 

  36. Diacu, F., Pérez-Chavela, E., and Santoprete, M., The n-Body Problem in Spaces of Constant Curvature, arXiv:0807.1747v6 22 Aug 2008.

  37. Diacu, F. and Santoprete, M., Nonintegrability and Chaos in the Anisotropic Manev Problem, Phys. D, 2001, vol. 156, pp. 39–52.

    Article  MATH  MathSciNet  Google Scholar 

  38. Shortley, G. H., The Inverse-Cube Central Force Field in Quantum Mechanics, Phys. Rev., 1931, vol. 38, pp. 120–127.

    Article  MATH  Google Scholar 

  39. Woronetz, P., Transformations of the Equations of Dynamics by Linear Integrals of Motion (with Application to the 3-Body Problem), 1907, vol. 47, 192 pp.

  40. Woronetz, P., Some Particular Cases of Motion of a System of Material Points under Action of Mutual Forces, Kiev Univ. Izv, 1905, vol. 45, no. 11, pp. 95–114.

    Google Scholar 

  41. Woronetz, P., Sur le mouvement d’un point matériel, soumis à une force donnée, sur une surface fixe et dépolie, J. de Math. Pures et Appl., 1915, vol. 1,ser. 7, pp. 261–275.

    Google Scholar 

  42. Banachiewitz, T., Sur un cas particulier du probl`eme des n corps, C. R. Acad. Sci. Paris, 1906, vol. 142, p. 510–512.

  43. Bilimowitch, A., Einige particuläre Lösungen des Problems der n Körper, Astron. Nachr., 1911, vol. 189, pp. 181–186.

    Article  Google Scholar 

  44. Longley, W.R., Some Particular Solutions in the Problem of n Bodies, Bull. Amer. Math. Soc., ser. 2, 1906, vol. 13, pp. 324–335.

    Article  MathSciNet  Google Scholar 

  45. Sokolov, Yu.D., Special Trajectories of the System of Free Material Particles, Kiev: Izd. AN Ukr.SSR, 1951 (Russian).

    Google Scholar 

  46. Sokolov, Yu.D., A New Integrable Case in a Rectilinear 3-Body Probem, Dokl. kad. nauk USSR, 1945, vol. 46, no. 8, pp. 99–102.

    Google Scholar 

  47. Sokolov, Yu.D., On a Spatial Homographic Motion of a System of 3 Material Points, Dokl. Akad. nauk USSR, 1947, vol. 58, no. 3, pp. 369–371.

    MATH  Google Scholar 

  48. Egervary, E., On a Generalization of the Lagrange problem of 3 Bodies, Dokl. Akad. nauk USSR, 1947, vol. 55, no. 9, pp. 805–807.

    MathSciNet  Google Scholar 

  49. Chazy, J., Sur la stabilité avec la loi du cube des distances, Bull. Astron., 1920, vol. 1,ser. 2, pp. 151–163.

    Google Scholar 

  50. Saari, D.G., Collisions, Rings, and Other Newtonian N-Body Problems, Providence, RI: AMS, 2005.

    MATH  Google Scholar 

  51. Wintner, A., Galilei Group and Law of Gravitation, Amer. J. Math., 1938, vol. 60, no. 2, pp. 473–476.

    Article  MathSciNet  Google Scholar 

  52. Dyson, F. J., Dynamics of a Spinning Gas Cloud, J. Math. Mech., 1968, vol. 18, no. 1, pp. 91–101.

    MATH  Google Scholar 

  53. Gaffet, B., Expanding Gas Clouds of Ellipsoidal Shape: New Exact Solutions, J. Fluid Mech., 1996, vol. 325, pp. 113–144.

    Article  MATH  MathSciNet  Google Scholar 

  54. Marsden, J. E. and Ratiu, T. S., Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, New York: Springer, 1994.

    MATH  Google Scholar 

  55. Borisov, A.V. and Mamaev, I.S., Rigid Body Dynamics. Hamiltonian Methods, Integrability, Chaos, Moscow-Izhevsk: Inst. komp. issled., RCD, 2005 (Russian).

    Google Scholar 

  56. Perelomov, A. M., The Simple Relation between Certai Dynamical Systems, Comm. Math. Phys., 1978, vol. 63, pp. 9–11.

    Article  MATH  MathSciNet  Google Scholar 

  57. Rosochatius, E., Über die Bewegung eines Punktes (Inaugural Dissertation, Univ. Göttingen), Berlin: Gebr. Unger, 1877.

    Google Scholar 

  58. Borisov, A.V. and Mamaev, I.S., Modern Methods of the Theory of Integrable Systems, Moscow-Izhevsk: Inst. komp. issled., RCD, 2003 (Russian).

    MATH  Google Scholar 

  59. Moser, J., Geometry of Quadrics and Spectral Theory, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), New York-Berlin: Springer, 1980, pp. 147–188.

    Google Scholar 

  60. Tsiganov, A.V., On Maximally Superintegrable Systems, Regul. Chaotic Dyn., 2008, vol. 13, no. 3, pp. 178–190.

    Article  MathSciNet  Google Scholar 

  61. Gaffet, B., Spinning Gas Clouds — without Vorticity, J. Phys. A: Math. Gen., 2000, vol. 33, pp. 3929–3946.

    Article  MATH  MathSciNet  Google Scholar 

  62. Gaffet, B., Sprinning Gas without Vorticity: the Two Missing Integrals, J. Phys. A: Math. Gen., 2001, vol. 34, pp. 2087–2095.

    Article  MATH  MathSciNet  Google Scholar 

  63. Gaffet, B., Sprinning Gas Clouds: Liouville Integrability, J. Phys. A: Math. Gen., 2001, vol. 34, pp. 2097–2109.

    Article  MATH  MathSciNet  Google Scholar 

  64. Julliard-Tosel, E., Meromorphic Parametric Non-Integrability; the Inverse Square Potential, Arch. Ration. Mech. Anal., 2000, vol. 152, pp. 187–205.

    Article  MathSciNet  Google Scholar 

  65. Calogero, F., Exactly Solvable One-Dimensional Many-Body Problems, Lett. Nuovo Cimento, 1975, vol. 13, pp. 411–416.

    Article  MathSciNet  Google Scholar 

  66. Calogero, F., Lett. Nuovo Cimento, 1976, vol. 16, p. 77

    Article  MathSciNet  Google Scholar 

  67. Olshanetsky, M.A. and Perelomov, A.M., Completely Integrable Hamiltonian Systems Connected with Semisimple Lie Algebras. Invent. Math., 1976, vol. 37, pp. 93–109.

    Article  MATH  MathSciNet  Google Scholar 

  68. Wojciechowski, S., Involutive Set of Integrals for Completely Integrable Many-Body Problems with Pair Interaction, Lett. Nuovo Cimento, 1977, vol. 18, no. 4, pp. 103–107.

    Article  Google Scholar 

  69. Levi, D. and Wojciechowski, S., On the Olshanetsky-PerelomovMany-Body System in an External Field Phys. Lett., 1984, vol. 103A, no. 1–2, pp. 11–14.

    MathSciNet  Google Scholar 

  70. Ranada, M. F., Superintegrability of the Calogero-Moser System: Constants of Motion, Master Symmetries and Time-Dependent Symmetries, J. Math. Phys., 1999, vol. 40, pp. 236–247.

    Article  MATH  MathSciNet  Google Scholar 

  71. Gonera, C., On the Superintegrability of Calogero-Moser-Sutherland Model, J. Phys. A: Math. Gen., 1998, vol. 31, pp. 4465–4472.

    Article  MATH  MathSciNet  Google Scholar 

  72. Wojciechowski, S., Superintegrability of the Calogero-Moser System, Phys. Lett. A, 1983, vol. 95, no. 6, pp. 279–281.

    Article  MathSciNet  Google Scholar 

  73. Smirnov, R. and Winternitz, P., A Class of Superintegrable Systems of Calogero Type, J. Math. Phys., 2006, vol. 47, no. 9, 093505, 8 pp.

  74. Kozlov, V.V. and Fedorov, Y.N., Integrable Systems on a Sphere with Potentials of Elastic Interaction, Mat. Zametki, 1994, vol. 56, no. 3, pp. 74–79 [Math. Notes, 1994, vol. 56, nos. 3–4, pp. 927–930].

    MathSciNet  Google Scholar 

  75. Agrotis, M., Damianou, P. A., and Sophocleous, C., The Toda Lattices is Super-Integrable, arXiv:mathph/0507051v1, 20 Jul 2005.

  76. Tsiganov, A.V., On an Integrable System Related to a Top and the Toda Lattice, Theor. mat. fiz., 2000, vol. 124, pp. 310–322.

    Google Scholar 

  77. Benenti, S., Chanu, C., and Rastelli, G., The Super-Separability of the Three-Body Inverse-Square Calogero System, J. Math. Phys., 2000, vol. 41, no. 7, pp. 4654–4678.

    Article  MATH  MathSciNet  Google Scholar 

  78. Smirnov, R. and Winternitz, P., Erratum: “A class of superintegrable systems of Calogero type” [J.Math. Phys., 2006, vol. 47, 093505], J. Math. Phys., 2007, vol. 48, no. 7, 079902, 1 p.

  79. Gibbons, J. and Hermsen, Th., A Generallisation of the Calogero-Moser System, Phys. D, 1984, vol. 11, pp. 337–348.

    Article  MATH  MathSciNet  Google Scholar 

  80. Wojciechowski, S., An Integrable Marriage of the Euler Equations with the Calogero-Moser System, Phys. Lett. A, 1985, vol. 111, no. 3, pp. 101–103.

    Article  MathSciNet  Google Scholar 

  81. Billey, E., Avan, J., and Babelon O., The r-Matrix Structure of the Euler-Calogero-Moser Model, arXiv:hep-th/9312042v1, 6 Dec 1993.

  82. Billey E., Avan J., Babelon O., Exact Yangian Symmetry in the Classical Euler-Calogero-Moser Model, arXiv:hep-th/9401117v1, 24 Jan 1994.

  83. Avan, J. and Billey, E., Observable Algebras for the Rational and Trigonometric Euler-Calogero-Moser Models, arXiv:hep-th/9404040v2, 26 Apr 1994.

  84. Krichever, I., Babelon, O., Billey, E., and Talon, M., Spin Generalization of the Calogero-Moser System and the Matrix KP Equation, arXiv:hep-th/9411160v1, 22 Nov 1994.

  85. Li, L.-Ch. and Xu, P., Spin Calogero-Moser Systems Associated with Simple Lie Algebras, C. R. Acad. Sci. Paris Ser. I Math., 2000, vol. 331, no. 1, pp. 55–60.

    MATH  MathSciNet  Google Scholar 

  86. Gogilidze, S. A., Khvedelidze, A. M., Mladenov, D. M., and Pavel H.-P., Hamiltonian Reduction of SU(2) Dirac-Yang-Mills Mechanics, arXiv:hep-th/9707136v1, 15 Jul 1997.

  87. Khvedelidze, A. and Mladenov, D., Euler-Calogero-Moser System from SU(2) Yang-Mills Theory, arXiv:hep-th/9906033v3, 20 Mar 2000.

  88. Calogero, F. and Marchioro, C., Exact Solution of a One-Dimensional Three-Body Scattering Problem with Two-Body and/or Three-Body Inverse-Square Potentials, J. Math. Phys., 1974, vol. 15, pp. 1425–1430.

    Article  MathSciNet  Google Scholar 

  89. Van Kampen, E.R. and Wintner, A., On a Symmetrical Canonical Reduction of the Problem of Three Bodies, Amer. J. Math., 1937, vol. 59, no. 1, pp. 153–166.

    Article  MathSciNet  Google Scholar 

  90. Van Kampen, E.R. and Wintner, A., On the Reduction of Dynamical Systems by Means of Parametrized Invariant Relations, Trans. Amer. Math. Soc., 1938, vol. 44, no. 2, pp. 168–195.

    Article  MATH  MathSciNet  Google Scholar 

  91. Anisimov S.I. and Lysikov Yu.I., On the Expansion of a Gas Cloud in Vacuum, Prikl. mat. mekh., 1970, vol. 34, pp. 926–929.

    Google Scholar 

  92. Kozlov, V.V., Symmetries, Topology and Resonances in Hamiltonian Mechanics, Berlin: Springer, 1996.

    Google Scholar 

  93. Kozlov, V.V. and Kolesnikov, N.N., Integrability of Hamiltonian systems, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1979, no. 6, pp. 88–91.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Borisov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, A.V., Kilin, A.A. & Mamaev, I.S. Multiparticle systems. The algebra of integrals and integrable cases. Regul. Chaot. Dyn. 14, 18–41 (2009). https://doi.org/10.1134/S1560354709010043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354709010043

MSC2000 numbers

Key words

Navigation