Regular and Chaotic Dynamics

, Volume 12, Issue 4, pp 357–364 | Cite as

Certain aspects of regularity in scalar field cosmological dynamics

  • A. Toporensky
  • P. Tretyakov
Research Articles

Abstract

We consider dynamics of the FRW Universe with a scalar field. Using Maupertuis principle we find a curvature of geodesics flow and show that zones of positive curvature exist for all considered types of scalar field potential. Usually, phase space of systems with the positive curvature contains islands of regular motion. We find these islands numerically for shallow scalar field potentials. It is shown also that beyond the physical domain the islands of regularity exist for quadratic potentials as well.

Key words

islands of regular motion scalar field cosmology 

MSC2000 numbers

37N30 65P20 37N20 83F05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parker, L. and Fulling, S., Quantized Matter Fields and Avoidance of Singularities in General Relativity, Phys. Rev. D, 1973, vol. 7, pp. 2357–2374.CrossRefGoogle Scholar
  2. 2.
    Starobinsky, A.A., On a Nonsingular Isotropic Cosmological Model, Pis’ma Astron. Zh., 1978, vol. 4, pp. 155–157 [Sov. Astron. Lett. (Engl. transl.), 1978, vol. 4, pp. 82–84].Google Scholar
  3. 3.
    Page, D.N., A Fractal Set of Perpetually Bouncing Universes? Class. Quant. Grav., 1984, vol. 1, no. 4, pp. 417–427.CrossRefGoogle Scholar
  4. 4.
    Cornish, N.J. and Shelard, E.P.S., Chaos in Quantum Cosmology, Phys. Rev. Lett., 1998, vol. 81, pp. 3571–3574.CrossRefGoogle Scholar
  5. 5.
    Cornish, N.J. and Levin, J., Chaos, Fractals and Inflation, Phys. Rev. D, 1996, vol. 53, pp. 3022–3032.CrossRefGoogle Scholar
  6. 6.
    Gaspard, P. and Rice, S.A., Scattering from a Classically Chaotic Repellor, J. Chem. Phys., 1989, vol. 90, no. 4, pp. 2225–2241.CrossRefGoogle Scholar
  7. 7.
    Toporensky, A.V., Regular and Chaotic Regimes in Scalar Field Cosmology, SIGMA Symmetry Integrability Geom. Methods Appl., 2006, vol. 2, Paper 037, 12 pp. (electronic).Google Scholar
  8. 8.
    Toporensky, A.V., Chaos in Closed Isotropic Cosmological Model with Steep Scalar Field Potential, Int. J. Mod. Phys. D, 1999, vol. 8, pp. 739–750.CrossRefGoogle Scholar
  9. 9.
    Krylov, N.S., Raboty po obosnovaniyu statisticheskoi fiziki (Papers on Ground of Statistical Physics), Moscow-Leningrad: Akad. Nauk SSSR, 1950.Google Scholar
  10. 10.
    Savvidy, G.K., Classical and Quantum Mechanics of Nonabelian Gauge Fields, Nuclear Phys. B, 1984, vol. 246, no. 2, pp. 302–334.CrossRefGoogle Scholar
  11. 11.
    Gurzadyan, V.G. and Kocharyan, A.A., Instability in Wheeler-DeWitt Superspace, Modern Phys. Lett. A, 1987, vol. 2, no. 12, pp. 921–927.CrossRefGoogle Scholar
  12. 12.
    Gurzadyan, V.G. and Savvidy, G.K., Collective Relaxation of Stelar Systems, Astron. Astroph., 1986, vol. 160, pp. 203–210.MATHGoogle Scholar
  13. 13.
    Biesiada, M. and Rugh, S., Maupertuis Principle, Wheeler’s Superspace and an Invariant Criterion for Local Instability in General Relativity, Preprint: arXiv:gr-qc/9408030.Google Scholar
  14. 14.
    Anosov, D.V., Geodesic Flows on Closed Riemann Manifolds with Negative Curvature, No. 90 of Proceedings of the Steklov Institute of Mathematics, 1967. Translated from the Russian, Providence, R.I.: American Mathematical Society, 1969, 235 pp.Google Scholar
  15. 15.
    Hénon, M. and Heiles, C., The Applicability of the Third Integral of Motion: Some Numerical Experiments, Astronom. J., 1964, vol. 69, pp. 73–79.CrossRefGoogle Scholar
  16. 16.
    Gurzadyan, V.G. and Kocharyan, A.A., Disk Galaxies and Dynamical Systems with Nonnegative Curvature, Astrophys. and Space Sci., 1987, vol. 133, no. 2, pp. 253–266.MATHCrossRefGoogle Scholar
  17. 17.
    Karas, V. and Vokrouhlicky, D., Chaotic Motion of Test Particles in the Ernst Space-Time, Gen. Relativity Gravitation, 1992, vol. 24, no. 7, pp. 729–743.CrossRefGoogle Scholar
  18. 18.
    Barkov, M., Bisnovatyi-Kogan, G., Neishtadt, A., and Belinski, V., On Chaotic Behavior of Gravitating Stellar Shells, Preprint: arXiv: nlin/0412027.Google Scholar
  19. 19.
    Toporensky, A.V., Transient Chaos in Scalar Field Cosmology on a Brane, Preprint: arXiv: gr-qc/0609048.Google Scholar
  20. 20.
    Alexeyev, S.O., Toporensky, A.V., and Ustiansky, V.O., Non-Singular Cosmological Models in String Gravity with Constant Dilaton and Second-Order Curvature Corrections, Classical Quantum Gravity, 2000, vol. 17, no. 11, pp. 2243–2254.MATHCrossRefGoogle Scholar
  21. 21.
    Damour, T. and Mukhanov, V.F., Inflation without Slow Roll, Phys. Rev. Lett., 1998, vol. 80, no. 16, pp. 3440–3443.MATHCrossRefGoogle Scholar
  22. 22.
    Pavluchenko, S. and Toporensky, A., Chaos in FRW Cosmology with Gently Sloping Scalar Field Potential, Gravitation and Cosmology, 2000, vol. 6, pp. 241–245.Google Scholar
  23. 23.
    Campos, A. and Sopuerta, C.F., Bulk Effects in the Cosmological Dynamics of Brane-World Scenarios, Phys. Rev. D, 2001, vol. 64, no. 10, Paper 104011, 13 pp.Google Scholar
  24. 24.
    Barrow, J.D., Kimberly, D., and Magueijo, J., Bouncing Universes with Varying Constants, Classical Quantum Gravity, 2004, vol. 21, no. 18, pp. 4289–4296.MATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. Toporensky
    • 1
  • P. Tretyakov
    • 1
  1. 1.Sternberg Astronomical InstituteMoscowRussia

Personalised recommendations