Skip to main content
Log in

Hyperbranched Oligoglycerols and Photochromic Compositions on Their Basis

  • FUNCTIONAL POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

New photochromic compositions are obtained on the basis of hyperbranched oligoglycerol covalently bound to a methyl methacrylate–maleic anhydride copolymer. The irradiation of such compositions with UV light leads to reversible photoinduced transformations between the cyclic spiropyran and open merocyanic forms of photochromic spiropyran. The kinetics of dark relaxation of the photoinduced merocyanine form to the initial state of the compound incorporated into the given polymer matrix is studied. It is shown that branched compounds with a relatively low molecular weight are efficient for preparing photochromic polymers with a high rate of dark relaxation. It is found that the time of dark relaxation of the polymer composition with a high molecular weight oligoglycerol introduced into the polymer matrix increases sharply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Photochromic Materials: Preparation, Properties and Applications, Ed. by H. Tian and J. Zhang (Wiley-VCH Verlag GmbH and Co., Weinheim, 2016).

    Google Scholar 

  2. E. N. Rodlovskaya, B. A. Izmailov, V. A. Vasnev, L. I. Komarova, S. I. Luiksaar, M. M. Krayushkin, V. A. Barachevskii, O. I. Kobeleva, and T. V. Valova, Polym. Sci., Ser. B 53, 352 (2011).

    Article  CAS  Google Scholar 

  3. K. Mutoh, Y. Kobayashi, and J. Abe, Dyes Pigments 137, 307 (2017).

    Article  CAS  Google Scholar 

  4. T. Feczko, O. Varga, M. Kovacs, T. Vidoczy, and B. Voncina, J. Photochem. Photobiol., A 222, 293 (2011).

    Article  CAS  Google Scholar 

  5. J. K. M. A. Rego, J. H. O. Nascimento, P. Agrwal, T. J. A. Melo, M. C. B. Costa, and E. I. Ito, Dyes Pigments 142, 350 (2017).

    Article  Google Scholar 

  6. T. Cheng, T. Lin, R. Brady, and X. Wang, Fibers Polym. 9, 301 (2008).

    Article  CAS  Google Scholar 

  7. A. Nechwatal, B. Kosan, and M. Nicolai, AATCC Rev. 13, 51 (2013).

    CAS  Google Scholar 

  8. V. A. Barachevskii, A. O. Ait, A. M. Gorelik, T. M. Valova, N. L. Zaichenko, L. S. Kol’tsova, A. I. Shienok, V. P. Grachev, and S. M. Aldoshin, Ross. Khim. Zh. 60 (4), 24 (2016).

    Google Scholar 

  9. Z. Zhu, Z. Li, Y. Tan, Z. Li, Q. Li, Q. Zeng, C. Ye, and J. Qin, Polymer 47, 7881 (2006).

    Article  CAS  Google Scholar 

  10. W. Wu, L. Huang, L. Xiao, X. Huang, R. Tang, C. Ye, J. Qin, and Z. Li, RSC Adv. 2, 6520 (2012).

  11. ASTU Copolymer 2216-009-95611404-2006. http://www.viragkzn.ru/pages/akrilovye-sopolimery-dlya-industrialnykh-krasok.html. Cited 2020.

  12. H. Frey and R. Haag, Rev. Mol. Biotechnol. 90, 257 (2002).

    Article  CAS  Google Scholar 

  13. Organic Photochromic and Thermochromic Compounds, Ed. by J. C. Crano, and R. J. Guglielmetti (Kluwer Acad./Plenum Publ., New York, 1999), Vol. 2.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The characterization of copolymers based on MMA and oligoglycerols was supported by the Ministry of Science and Higher Education of the Russian Federation; studies were carried out using scientific equipment from the Center for the Structural Study of Molecules, Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of program no. 14 of the Presidium of the Russian Academy of Sciences (in terms of obtaining and characterizing samples of photochromic coatings) and the State Assignment for the Federal Research Center Crystallography and Photonics, Russian Academy of Sciences (in terms of the study of photochromic transformations).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Golubkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubkov, S.S., Baranov, O.V., Valova, T.M. et al. Hyperbranched Oligoglycerols and Photochromic Compositions on Their Basis. Polym. Sci. Ser. B 63, 63–67 (2021). https://doi.org/10.1134/S1560090421010036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090421010036

Navigation