Covalent Modification of Epoxy-Amine Systems with a Guanidine-Containing Oligomer to Enhance Their Activity against Pathogenic Microorganisms

Abstract

This paper addresses the modification of epoxy-amine systems with new reactive compounds, oligohexamethyleneguanidine salts. Using commercial hydrochloride of oligohexamethyleneguanidine, its hydrosalicylate, hydro-5-sulfosalicylate, and hydro-4-aminosalicylate are isolated and characterized. During salt preparation, the main macromolecular chain of oligohexamethyleneguanidine remains almost intact. The scheme advanced for the covalent introduction of a modifier in an epoxy-amine network involves the preliminary synthesis of the adduct of an epoxy oligomer and oligohexamethyleneguanidine salt followed by its cure with oligoamine. Conditions for formation of uncured viscous-flow adducts well miscible with the epoxy oligomer and the curing agent are determined. Using these adducts, the cured elastic films are obtained, among which samples modified with oligohexamethylene-guanidine hydro-4-aminosalicylate demonstrate the most pronounced activity against model microorganisms Mycobacterium smegmatis. These materials show promise as a basis for the development of biocidal coatings.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Epoxy Polymers. New Materials and Innovations, Ed. by J.-P. Pascault and R. J. J. Williams (Wiley-VCH, Weinheim, 2010).

    Google Scholar 

  2. 2

    E. M. Petrie, Epoxy Adhesive Formulations (McGraw-Hill, New York, 2006).

    Google Scholar 

  3. 3

    J. K. Fink, Reactive Polymers – Fundamentals and Applications (William Andrew Publ., Norwich, 2005), p. 139.

    Google Scholar 

  4. 4

    V. G. Khozin, Reinforcement of Epoxy Polymers (Dom pechati, Kazan, 2004) [in Russian].

  5. 5

    Yu. S. Zaitsev, Yu. S. Kochergin, M. K. Pakter, and R. V. Kucher, Epoxy Oligomers and Adhesive Compositions (Naukova dumka, Kiev, 1990) [in Russian].

    Google Scholar 

  6. 6

    I. N. Senchikhin, E. S. Zhavoronok, A. V. Matveev, O. Ya. Uryupina, and V. I. Roldughin, Colloid J. 80, 324 (2018).

    Google Scholar 

  7. 7

    E. S. Zhavoronok, I. P. Sedishev, A. V. Safonov, and I. N. Senchikhin, Polym. Sci., Ser. A 61, 610 (2019).

    CAS  Article  Google Scholar 

  8. 8

    S. A. Kedik, O. A. Bocharova, Kha Kam An, A. V. Panov, I. P. Sedishev, E. S. Zhavoronok, G. I. Timofeeva, V. V. Suslov, and S. G. Beksaev, Pharm. Chem. J. 44, 568 (2010).

    Article  Google Scholar 

  9. 9

    E. G. Salina, Candidate’s Dissertation in Biology (Inst. Biokhim. im. A.N. Bakha, Moscow, 2006).

  10. 10

    N. Casali, V. Nikolayevskyy, Ya. Balabanova, S. R. Harris, O. Ignatyeva, I. Kontsevaya, Ju. Corander, J. Bryant, Ju. Parkhill, S. Nejentsev, R. D. Horstmann, T. Brown, and F. Drobniewski, Nat. Genet. 46, 279 (2014).

    CAS  Article  Google Scholar 

  11. 11

    “Mycobacteria,” in European Pharmacopeia in Russian (Gruppa remedium, Moscow, 2015), Vol. 1 [in Russian].

  12. 12

    S. A. Kedik, D. O. Shatalov, P. M. Isaykina, A. D. Askretkov, I. P. Sedishev, A. V. Panov, and A. S. Evseeva, Pharm. Chem. J. 51, 773 (2017).

    CAS  Article  Google Scholar 

  13. 13

    S. G. Entelis, V. V. Evreinov, and A. I. Kuzaev, Reactive Oligomers (Khimiya, Moscow, 1985) [in Russian].

    Google Scholar 

  14. 14

    F. G. Garcia, P. M. Silva, B. G. Soares, and J. R. Briones, Polym. Test. 26, 95 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Zh. Sun, J. Zhang, X. Zhang, S. Wang, Y. Zhang, and Ch. Li, Int. J. Antimicrob. Agents 31, 115 (2008).

    CAS  Article  Google Scholar 

  16. 16

    A. K. Ivanov, Tuberculosis. Features of Progress, Possibilities of Pharmacotherapy (St. Peterburgskaya Gos. Med. Akad. im. I. I. Mechnikova, St. Petersburg, 2009) [in Russian].

  17. 17

    S. E. Borisov and G. B. Sokolova, Consilium Medicum 3, 595 (2001).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E.K. Urodkova (Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences) for her help in registering FTIR spectra. The experiments were carried out using equipment of the Shared Research Center of the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation. We are also grateful to the Russian Foundation for Basic Research (project no. 18-08- 01252А) for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. S. Zhavoronok.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhavoronok, E.S., Sedishev, I.P., Merkulova, M.S. et al. Covalent Modification of Epoxy-Amine Systems with a Guanidine-Containing Oligomer to Enhance Their Activity against Pathogenic Microorganisms. Polym. Sci. Ser. B 63, 31–40 (2021). https://doi.org/10.1134/S1560090420060135

Download citation