Influence of the Nature of Chemical Modification of Addition Poly(5-vinyl-2-norbornene) on the Gas Permeability of Hydrocarbons


The gas permeability of hydrocarbons (CH4, C2H6, n-C4H10) through four polynorbornenes obtained by modification of the addition poly(5-vinyl-2-norbornene) is studied. Upon modification, both polar (oxirane and thioacetyl fragments) and nonpolar substituents (cyclopropyl and ethyl groups) are introduced into side substituents. The introduction of polar groups leads to a decrease in gas permeability, while the hydrogenation or cyclopropanation of addition poly(5-vinyl-2-norbornene) causes an increase in gas permeability. Despite the fact that the synthesized polymers are glassy and nonmicroporous materials, they have an unusual feature for such polymers—the selectivity of hydrocarbon separation controlled by solubility (α(n‑C4H10/CH4) ≫ 1). Among the studied polymers, the optimal combination of gas permeability and selectivity is observed for the cyclopropanated polymer.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.


  1. 1

    F. Blank and C. Janiak, Coord. Chem. Rev. 253, 827 (2009).

    CAS  Article  Google Scholar 

  2. 2

    K. J. Ivin and J. C. Mol, in Olefin Metathesis and Metathesis Polymerization (Acad. Press, London, 1997), p. 340.

    Google Scholar 

  3. 3

    B. L. Goodall, in Late Transition Metal Polymerization Catalysis, Ed. by B. Rieger, L. S. Baugh, S. Kacker, and S. Striegler (Wiley-VCH, Weinheim, 2003), p. 101.

    Google Scholar 

  4. 4

    B. L. Goodall and L. H. McIntosh, US Patent No. 7041758B2 (2008).

  5. 5

    V. R. Flid, M. L. Gringolts, R. S. Shamsiev, and E. S. Finkelshtein, Russ. Chem. Rev. 87, 1169 (2018).

    CAS  Article  Google Scholar 

  6. 6

    D. S. Suslov, M. V. Bykov, and O. V. Kravchenko, Polym. Sci., Ser. C 61, 145 (2019).

    CAS  Article  Google Scholar 

  7. 7

    B. A. Bulgakov, M. V. Bermeshev, D. V. Demchuk, V. G. Lakhtin, A. G. Kazmin, and E. S. Finkelshtein, Tetrahedron 68, 2166 (2012).

    CAS  Article  Google Scholar 

  8. 8

    D. A. Alentiev, P. P. Chapala, M. P. Filatova, E. S. Finkelshtein, and M. V. Bermeshev, Mendeleev Commun. 26, 530 (2016).

    CAS  Article  Google Scholar 

  9. 9

    M. A. Guseva, D. A. Alentiev, E. V. Bermesheva, I. A. Zamilatskov, and M. V. Bermeshev, RSC Adv. 9, 33029 (2019).

  10. 10

    M. Stosur and T. Szymańska-Buzar, J. Mol. Catal. A: Chem. 286, 98 (2008).

    CAS  Article  Google Scholar 

  11. 11

    M. V. Bermeshev and P. P. Chapala, Prog. Polym. Sci. 84, 1 (2018).

    CAS  Article  Google Scholar 

  12. 12

    P. Chapala, M. Bermeshev, L. Starannikova, I. Borisov, V. Shantarovich, V. Lakhtin, V. Volkov, and E. Finkelshtein, Macromol. Chem. Phys. 217, 1966 (2016).

    CAS  Article  Google Scholar 

  13. 13

    V. Alupei, S. W. Choi, I. C. Alupei, and H. Ritter, Polymer 45, 2111 (2004).

    CAS  Article  Google Scholar 

  14. 14

    R. M. Peetz, A. F. Moustafa, and J. P. Kennedy, J. Polym. Sci., Part A: Polym. Chem. 41, 732 (2003).

    CAS  Article  Google Scholar 

  15. 15

    A. A. Morontsev, M. L. Gringol’ts, M. P. Filatova, and E. Sh. Finkelshtein, Polym. Sci., Ser. B 58, 695 (2016).

    CAS  Article  Google Scholar 

  16. 16

    A. A. Morontsev, V. A. Zhigarev, R. Y. Nikiforov, N. A. Belov, M. L. Gringolts, E. S. Finkelshtein, and Y. P. Yampolskii, Eur. Polym. J. 99, 340 (2018).

    CAS  Article  Google Scholar 

  17. 17

    B. Commarieu, J. Potier, M. Compaore, S. Dessureault, B. L. Goodall, X. Li, and J. P. Claverie, Macromolecules 49, 920 (2016).

    CAS  Article  Google Scholar 

  18. 18

    E. V. Bermesheva, A. I. Wozniak, I. L. Borisov, N. P. Yevlampieva, O. S. Vezo, G. O. Karpov, M. V. Bermeshev, A. F. Asachenko, M. A. Topchiy, P. S. Gribanov, M. S. Nechaev, V. V. Volkov, and E. S. Finkelshtein, Polym. Sci., Ser. C 61, 86 (2019).

    CAS  Article  Google Scholar 

  19. 19

    F. Blank, J. K. Vieth, J. Ruiz, V. Rodríguez, C. Janiak, J. Organomet. Chem. 696, 473 (2011).

    Article  Google Scholar 

  20. 20

    T. Saito and Y. Wakatsuki, Polymer 53, 308 (2012).

    CAS  Article  Google Scholar 

  21. 21

    A. I. Wozniak, E. V. Bermesheva, F. A. Andreyanov, I. L. Borisov, D. P. Zarezin, D. S. Bakhtin, N. N. Gavrilova, I. R. Ilyasov, M. S. Nechaev, A. F. Asachenko, M. A. Topchiy, A. V. Volkov, E. S. Finkelshtein, X.‑K. Ren, and M. Bermeshev, React. Funct. Polym. 149, 104513 (2020)

  22. 22

    E. V. Bermesheva, A. I. Wozniak, F. A. Andreyanov, G. O. Karpov, M. S. Nechaev, A. F. Asachenko, M. A. Topchiy, E. K. Melnikova, Y. V. Nelyubina, P. S. Gribanov, and M. V. Bermeshev, ACS Catal. 10, 1663 (2020).

    CAS  Article  Google Scholar 

  23. 23

    M. Macchione, J. C. Jansen, G. De Luca, E. Tocci, M. Longeri, and E. Drioli, Polymer 48, 2619 (2007).

    CAS  Article  Google Scholar 

  24. 24

    A. I. Wozniak, E. V. Bermesheva, I. L. Borisov, D. I. Petukhov, M. V. Bermeshev, A. V. Volkov, E. S. Finkelshtein, Macromol. Rapid Commun. 40, (2019).

  25. 25

    K. D. Dorkenoo, P. H. Pfromm, and M. E. Rezac, J. Polym. Sci., Part B: Polym. Phys. 36, 797 (1998).

    CAS  Article  Google Scholar 

  26. 26

    S. R. Thrasher and M. E. Rezac, Polymer 45, 2641 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Y. Yampolskii, L. Starannikova, N. Belov, M. Bermeshev, M. Gringolts, and E. Finkelshtein, J. Membr. Sci. 453, 532 (2014).

    CAS  Article  Google Scholar 

  28. 28

    S. Kim and Y. M. Lee, Prog. Polym. Sci. 43, 1 (2015).

    CAS  Article  Google Scholar 

  29. 29

    K. Nagai, T. Masuda, T. Nakagawa, B. D. Freeman, and I. Pinnau, Prog. Polym. Sci. 26, 721 (2001).

    CAS  Article  Google Scholar 

  30. 30

    P. M. Budd, N. B. McKeown, B. S. Ghanem, K. J. Msayib, D. Fritsch, L. Starannikova, N. Belov, O. Sanfirova, Y. Yampolskii, and V. Shantarovich, J. Membr. Sci. 325, 851 (2008).

    CAS  Article  Google Scholar 

  31. 31

    D. A. Alentiev, E. S. Egorova, M. V. Bermeshev, L. E. Starannikova, M. A. Topchiy, A. F. Asachenko, P. S. Gribanov, M. S. Nechaev, Y. P. Yampolskii, and E. S. Finkelshtein, J. Mater. Chem. A 6, 19393 (2018).

    CAS  Article  Google Scholar 

  32. 32

    M. V. Bermeshev, A. V. Syromolotov, L. E. Starannikova, M. L. Gringolts, V. G. Lakhtin, Y. P. Yampolskii, and E. S. Finkelshtein, Macromolecules 46, 8973 (2013).

    CAS  Article  Google Scholar 

  33. 33

    J. T. Vaughn, D. J. Harrigan, B. J. Sundell, J. A. Lawrence III, and J. Yang, J. Membr. Sci. 522, 68 (2017).

    CAS  Article  Google Scholar 

  34. 34

    E. Finkelshtein, M. Gringolts, M. Bermeshev, P. Chapala, and Y. Rogan, in Membrane Materials for Gas and Vapor Separation: Synthesis and Application of Silicon-Containing Polymers, Ed. by Y. Yampolskii and E. Finkelstain (John Wiley & Sons, Inc., Hoboken, 2017), p. 143.

    Google Scholar 

  35. 35

    P. P. Chapala, M. V. Bermeshev, L. E. Starannikova, N. A. Belov, V. E. Ryzhikh, V. P. Shantarovich, V. G. Lakhtin, N. N. Gavrilova, Y. P. Yampolskii, and E. S. Finkelshtein, Macromolecules 48, 8055 (2015).

    CAS  Article  Google Scholar 

  36. 36

    S. A. Stern, V. M. Shah, and B. J. Hardy, J. Polym. Sci., Part B: Polym. Phys. 25, 1263 (1987).

    CAS  Article  Google Scholar 

  37. 37

    W. L. Robb, Ann. N. Y. Acad. Sci. 146, 119 (1968).

    CAS  Article  Google Scholar 

Download references


This study was supported by the Russian Science Foundation (project no. 17-19-01595). The study of the properties of silicon-containing polynorbornenes was carried out as a part of the State Task for the Institute of Petrochemical Synthesis of the Russian Academy of Sciences.

Author information



Corresponding author

Correspondence to M. V. Bermeshev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wozniak, A.I., Borisov, I.L., Bermesheva, E.V. et al. Influence of the Nature of Chemical Modification of Addition Poly(5-vinyl-2-norbornene) on the Gas Permeability of Hydrocarbons. Polym. Sci. Ser. B 62, 218–224 (2020).

Download citation