Polymer Science, Series B

, Volume 59, Issue 6, pp 689–696 | Cite as

Synthesis and Thermal Performance of Polyurea Microcapsulated Phase Change Materials by Interfacial Polymerization

  • Hui Zhang
  • Yeting Shi
  • Baoqing Shentu
  • Zhixue Weng


Microencapsulated phase change materials with paraffin as the core material were synthesized by interfacial polymerization of isophorone diisocyanate with diethylene triamine. The particle size and particle size distribution, morphology, thermal performance and the encapsulation efficiency of the prepared materials were investigated. The results of Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy suggested that the paraffin core was well encapsulated by the polyurea resin. The particle size of the prepared materials decreased and its distribution became narrow with the increase of the emulsification time, stirring speed and emulsifier amount. The thermal gravimetric analysis indicated that the prepared materials exhibited good thermal stability, while the differential scanning calorimetry their high encapsulation efficiency.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Pielichowska and K. Pielichowski, Prog. Mater. Sci. 65, 67 (2014).CrossRefGoogle Scholar
  2. 2.
    M. Kenisarin and K. Mahkamov, Renewable Sustainable Energy Rev. 11, 1913 (2007).CrossRefGoogle Scholar
  3. 3.
    M. M. Farid, A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj, Energy Convers. Manage. 45, 1597 (2004).CrossRefGoogle Scholar
  4. 4.
    L. Pérez-Lombard, J. Ortiz, and C. Pout, Energy Build. 40, 394 (2008).CrossRefGoogle Scholar
  5. 5.
    A. G. Kwok and N. B. Rajkovich, Build. Environ. 45, 18 (2010).CrossRefGoogle Scholar
  6. 6.
    F. Ardente, M. Beccali, M. Cellura, and M. Mistretta, Energy Build. 40, 1 (2008).CrossRefGoogle Scholar
  7. 7.
    I. Z. Bribián, A. A. Usón, and S. Scarpellini, Build. Environ. 44, 251 (2009).Google Scholar
  8. 8.
    A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, Renewable Sustainable Energy Rev. 13, 318 (2009).CrossRefGoogle Scholar
  9. 9.
    A. R. Shirinabadi, A. R. Mahdavian, and S. Khoee, Macromolecules 44, 7405 (2011).CrossRefGoogle Scholar
  10. 10.
    C. Y. Zhao and G. H. Zhang, Renewable Sustainable Energy Rev. 15, 3813 (2011).CrossRefGoogle Scholar
  11. 11.
    C. Alkan, A. Sarı, A. Karaipekli, and O. Uzun, Sol. Energy Mater. Sol. Cells 93, 143 (2011).CrossRefGoogle Scholar
  12. 12.
    Y. Rao, G. P. Lin, Y. Luo, S. L. Chen, and L. Wang, Heat. Trans.–Asian. Res. 36, 28 (2005).CrossRefGoogle Scholar
  13. 13.
    J. K. Choi, J. G. Lee, J. H. Kim, and H. S. Yang, J. Ind. Eng. Chem. 7, 358 (2001).Google Scholar
  14. 14.
    J. F. Su, L. X. Wang, and L. Ren, J. Appl. Polym. Sci. 97, 1755 (2005).CrossRefGoogle Scholar
  15. 15.
    P. Siddhan, M. Jassal, and A. K. Agrawal, J. Appl. Polym. Sci. 106, 786 (2007).CrossRefGoogle Scholar
  16. 16.
    J. F. Su, L. X. Wang, L. Ren, Z. Huang, and X. W. Meng, J. Appl. Polym. Sci. 102, 4996 (2006).CrossRefGoogle Scholar
  17. 17.
    H. Zhang and X. Wang, Colloids Surf., A 332, 129 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Hui Zhang
    • 1
  • Yeting Shi
    • 1
  • Baoqing Shentu
    • 1
  • Zhixue Weng
    • 1
  1. 1.State Key Lab of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations