Advertisement

Polymer Science, Series B

, Volume 59, Issue 6, pp 665–673 | Cite as

Effect of Viscosity of Dimethacrylate Ester-Based Compositions on the Kinetics of Their Photopolymerization in Presence of o-Quinone Photoinitiators

  • M. Yu. Zakharina
  • V. B. Fedoseev
  • Yu. V. Chechet
  • S. A. Chesnokov
  • A. S. Shaplov
Polymerization
  • 14 Downloads

Abstract

The kinetics of photopolymerization of compositions based on dimethacrylate oligomers with viscosities ranging from 1.5 to 376.7 cSt under the action of visible light (9,10-phenanthrenquinone and a mixture of 3,6-di-tert-butyl-1,2-benzoquinone with N,N-dimethylcyclohexylamine as initiators) is studied. Dimethacrylates of poly(ethylene glycols) with the number of ethoxy fragments of n = 1–4 and 8, dimethacrylates of OKM-2 and MDF-2 trademarks, and solvents (benzene, acetonitrile, and dinonyl ester of phthalic acid) are used. At the initial stages of the reaction, the dependence of the reduced rate of photopolymerization of such compositions on their initial viscosity is described by a curve attaining a plateau at a viscosity of 100 cSt or above. The dependences of viscosity of all dimethacrylates on temperature ranging from –10 to +80°С are determined, the effective activation energies of monomer viscous flow are calculated, and the temperature dependences of the number of molecules in associates for each of the oligomers are ascertained. At Т = 20°С, the number of molecules in the associates of poly(ethylene glycol) dimethacrylates with n = 1–4 does not exceed 10, for n = 8 the number of molecules in the associates is ∼102, and for dimethacrylates of OKM-2 and MDF-2 trademarks this value is above 104.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Davidson, Exploring the Science, Technology and Application of UV and EB Curing (SITA Technol. Ltd., London, 1999).Google Scholar
  2. 2.
    J. G. Kloosterboer, Adv. Polym. Sci. 84, 1 (1988).CrossRefGoogle Scholar
  3. 3.
    K. S. Anseth, S. M. Newman, and C. N. Bowman, Adv. Polym. Sci. 122, 177 (1995).CrossRefGoogle Scholar
  4. 4.
    C. Decker, Prog. Polym. Sci. 21, 593 (1996).CrossRefGoogle Scholar
  5. 5.
    Y. G. Medvedevskikh, A. R. Kytsya, L. I. Bazylyak, A. A. Turovsky, and G. E. Zaikov, Stationary Kinetics of the Photoinitiated Polymerization (VSP, Utrecht; Boston, 2004).Google Scholar
  6. 6.
    P. J. Bartolo, Stereolithography: Materials, Processes and Applications (Springer-Verlag, New York, 2011).CrossRefGoogle Scholar
  7. 7.
    A. A. Berlin, G. V. Korolev, T. Ya. Kefeli, and Yu.M. Severgin, Acrylic Oligomers and Related Materials (Khimiya, Moscow, 1983) [in Russian].Google Scholar
  8. 8.
    L. A. Sukhareva, Polyester Coatings. Structure and Properties (Khimiya, Moscow, 1987) [in Russian].Google Scholar
  9. 9.
    S. N. Mensov and Y. V. Polushtaytsev, Laser Phys. 18 (4), 424 (2008).CrossRefGoogle Scholar
  10. 10.
    V. M. Treushnikov and S. A. Chesnokov, J. Photochem. Photobiol., A 196, 201 (2008).CrossRefGoogle Scholar
  11. 11.
    N. Moszner and T. Hirt, J. Polym. Sci., Part A: Polym. Chem. 50, 4369 (2012).CrossRefGoogle Scholar
  12. 12.
    J. G. Leprince, W. M. Palin, M. A. Hadis, J. Devaux, and G. Leloup, Dent. Mater. 29, 139 (2013).CrossRefGoogle Scholar
  13. 13.
    A. A. Berlin and E. F. Samarin, Vysokomol. Soedin., Ser. B 11 (7), 530 (1969).Google Scholar
  14. 14.
    B. R. Smirnov, I. V. Golikov, G. V. Korolev, Yu. E. Shapiro, I. V. Shutova, and V. D. Sukhov, Vysokomol. Soed. A 19 (4), 735 (1977).Google Scholar
  15. 15.
    A. B. Scranton, C. N. Bowman, J. Klier, and N. A. Peppas, Polymer 33, 1683 (1992).CrossRefGoogle Scholar
  16. 16.
    W. D. Cook, J. Polym. Sci., Part A: Polym. Chem. 31, 1053 (1993).CrossRefGoogle Scholar
  17. 17.
    K. S. Anseth, L. M. Kline, T. A. Walker, K. J. Anderson, and C. N. Bowman, Macromolecules 28, 2491 (1995).CrossRefGoogle Scholar
  18. 18.
    E. Andrzejewska, L. Linden, and J. F. Rabek, Macromol. Chem. Phys. 199, 441 (1998).CrossRefGoogle Scholar
  19. 19.
    E. Andrzejewska, Prog. Polym. Sci. 26, 605 (2001).CrossRefGoogle Scholar
  20. 20.
    L. G. Lovell, J. W. Stansbury, D. C. Syrpes, and C. N. Bowman, Macromolecules 32, 3913 (1999).CrossRefGoogle Scholar
  21. 21.
    L. D. Randolpha, J. Steinhaus, B. Moginger, B. Galleze, J. Stansburyf, W. N. Palin, G. Leloup, and J. G. Leprince, Dent. Mater. 32, 136 (2016).CrossRefGoogle Scholar
  22. 22.
    T. Spinell, A. Schedle, and D. C. Watts, Dent. Mater. 25, 1058 (2009).CrossRefGoogle Scholar
  23. 23.
    J. G. Leprince, W. M. Paling, M. A. Hadis, J. Devaux, and G. Leloup, Dent. Mater. 29, 139 (2013).CrossRefGoogle Scholar
  24. 24.
    C. Charton, V. Falk, Ph. Marchal, F. Pla, and P. Colon, Dent. Mater. 23, 1447 (2007).CrossRefGoogle Scholar
  25. 25.
    D. S. Achilias and I. D. Sideridou, Macromolecules 37, 4254 (2004).CrossRefGoogle Scholar
  26. 26.
    N. B. Cramer, J. W. Wydra, J. W. Stansbury, and C. N. Bowman, Dent. Mater. 30, 605 (2014).CrossRefGoogle Scholar
  27. 27.
    D. S. Viswanath, T. K. Ghosh, D. H. L. Prasad, N. V. K. Dutt, and K. Y. Rani, Viscosity of Liquids. Theory, Estimation, Experiment, and Data (Springer, the Netherlands, 2007).Google Scholar
  28. 28.
    A. A. Berlin, T. Ya. Kefeli, and G. V. Korolev, Polyesteracrylates (Nauka, Moscow, 1967) [in Russian].Google Scholar
  29. 29.
    S. A. Chesnokov, M. Y. Zakharina, A. S. Shaplov, Yu.V. Chechet, E. I. Lozinskaya, O. A. Mel’nik, Y. S. Vygodskii, and G. A. Abakumov, Polym. Int. 57, 538 (2008).CrossRefGoogle Scholar
  30. 30.
    S. A. Chesnokov, M. Y. Zakharina, A. S. Shaplov, E. I. Lozinskaya, I. A. Malyshkina, G. A. Abakumov, F. Vidal, and Yu. S. Vygodskii, J. Polym. Sci., Part A: Polym. Chem. 48 (11), 2388 (2010).CrossRefGoogle Scholar
  31. 31.
    C. A. Chesnokov, V. K. Cherkasov, G. A. Abakumov, O. N. Mamysheva, Yu. V. Chechet, and V. I. Nevodchikov, Russ. Chem. Bull. 50, 2366 (2001).CrossRefGoogle Scholar
  32. 32.
    E. G. Rozantsev and V. D. Sholle, Organic Chemistry of Free Radicals (Khimiya, Moscow, 1979) [in Russian].Google Scholar
  33. 33.
    J. Gordon and R. A. Ford, The Chemist’s Companion (AWiley Intersci. Publ., J Wiley and Sons, New York; London; Sydney; Toronto, 1972.Google Scholar
  34. 34.
    V. I. Arulin and L. I. Efimov, Tr. Khim. Khim. Tekhnol., No. 2, 74 (1970).Google Scholar
  35. 35.
    S. Patai, The Chemistry of the Quinonoid Compounds (Wiley, London; NewYork; Sydney; Toronto, 1974).Google Scholar
  36. 36.
    S. A. Chesnokov, V. K. Cherkasov, G. A. Abakumov, O. N. Mamysheva, M. Y. Zakharina, N. Y. Shushunova, Y. V. Chechet, and V. A. Kuropatov, Polym. Sci., Ser. B 56 (1), 11 (2014).CrossRefGoogle Scholar
  37. 37.
    M. P. Shurygina, Yu. A. Kurskii, S. A. Chesnokov, and G. A. Abakumov, Tetrahedron 64 (7), 1459 (2008).CrossRefGoogle Scholar
  38. 38.
    M. P. Shurygina, Yu. A. Kurskii, N. O. Druzhkov, S. A. Chesnokov, and G. A. Abakumov, High Energy Chem. 44 (3), 234 (2010).CrossRefGoogle Scholar
  39. 39.
    G. Odian, Principles of Polymerization (McGraw-Hill Book Company, New York, 1970).Google Scholar
  40. 40.
    Y. S. Vygodskij, E. I. Lozinskaya, and A. S. Shaplov, Polym. Sci., Ser. C 43 (2), 236 (2001).Google Scholar
  41. 41.
    V. R. Duflot, N. Kh. Faizi, and Yu. A. Chikin, Vysokomol. Soed., Ser. A 24 (11), 2363 (1982).Google Scholar
  42. 42.
    G. I. Fuks, Viscosity and Plasticity of Oil Products (Inst. Kompyut. Issled., Moscow; Izhevsk, 2003) [in Russian].Google Scholar
  43. 43.
    G. I. Phuks, E. N. Marcheva, and V. V. Galkina, Chem. Technol. Fuels Oils 18 (12), 587 (1982).CrossRefGoogle Scholar
  44. 44.
    V. I. Obraztsov and A. A. Khrustaleva, Zh. Fiz. Khim. 47 (4), 812 (1973).Google Scholar
  45. 45.
    V. M. Munikhes, S. I. Kuzina, D. P. Kiryukhin, A. I. Mikha’lov, and I. M. Barkalov, Polym. Sci., Ser. A 20 (4), 913 (1978).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. Yu. Zakharina
    • 1
  • V. B. Fedoseev
    • 1
  • Yu. V. Chechet
    • 1
  • S. A. Chesnokov
    • 1
  • A. S. Shaplov
    • 2
    • 3
  1. 1.G.A. Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhny NovgorodRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  3. 3.Luxembourg Institute of Science and Technology (LIST)Esch-sur-AlzetteLuxembourg

Personalised recommendations