Advertisement

Polymer Science, Series B

, Volume 59, Issue 6, pp 741–748 | Cite as

Preparation and Characterization of Functionalized Polyaniline-Based Nanocomposite as an Antibacterial Agent

  • Hamidreza Ghafouri Taleghani
  • Hossein Fakhraiee
  • Hossein Zare
Composites

Abstract

Polyaniline-co-phenylenediamine (PAn/PDA) nanocomposite has been prepared in the aqueous medium using sodium dodecyl benzene sulfonate (DBSNa) and hydroxypropylcellulose (HPC) as a surfactant. The tests used in this research to characterize the products were SEM, TEM, FTIR, UV–Visible and TGA for morphology, particle size, chemical structure and stability. The results confirm that the spherical nanocomposites (40–90 nm) were formed with high thermal stability. It is shown in the results that the physicochemical properties of poly(alkyl substituted anilines) are depended on the substituent groups that are bonded to N-position. The prepared nanocomposites were then tested for the antibacterial properties against three pathogenic strains. The antibacterial properties of nanocomposites were investigated by disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentrations (MBC), and bactericidal kinetic methods. The disk diffusion result indicated that the diameter of the inhibition zones of PAn/PDA–HPC nanocomposite was 9, 11, and 10 mm against E. coli, P. aeruginosa, and S. aureus respectively. It was found that the value of MIC of PAn/PDA–HPC nanocomposite against E. coli, P. aeruginosa and S. aureus were 2.5, 1.25 and 2.5 mg/mL respectively. The evaluation results revealed the PAn/PDA–HPC nanocomposite exhibited excellent inhibitory activity against both gram-negative and gram-positive bacteria.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Wang, J. Bai, C. Li, Y. Zhang, and J. Zhang, Colloid Polym. Sci. 290, 667 (2012).CrossRefGoogle Scholar
  2. 2.
    E. Tang and S. Dong, Colloid Polym Sci. 287, 1025 (2009).CrossRefGoogle Scholar
  3. 3.
    S. N. Ezzati, M. Rabbani, R. M. Leblanc, E. Asadi, S. M. H. Ezzati, R. Rahimi, and S. Azodi-Deilami, J. Alloys Compd. 646, 1157 (2015).CrossRefGoogle Scholar
  4. 4.
    I. Y. Sapurina, M. Ivanova, V. Ivanova, E. Burtseva, S. Trushakova, E. Isaeva, E. Kirilova, Y. E. Kurochkina, A. Manykin, and L. Uryvaev, Polym. Sci., Ser. A 56, 450 (2014).CrossRefGoogle Scholar
  5. 5.
    D. Svirskis, J. Travas-Sejdic, A. Rodgers, and S. Garg, J. Controlled Release 146, 6 (2010).CrossRefGoogle Scholar
  6. 6.
    T. B. Ghzaiel, W. Dhaoui, F. Schoenstein, P. Talbot, and F. Mazaleyrat, J. Alloys Compd. 692, 774 (2017).CrossRefGoogle Scholar
  7. 7.
    M. Ghorbani, H. Esfandian, N. Taghipour, and R. Katal, Desalination 263, 279 (2010).CrossRefGoogle Scholar
  8. 8.
    M. Aleahmad, H. G. Taleghani, and H. Eisazadeh, Synth. Met. 161, 990 (2011).CrossRefGoogle Scholar
  9. 9.
    S. Ameen, M. Shaheer Akhtar, and M. Husain, Sci. Adv. Mater. 2, 441 (2010).CrossRefGoogle Scholar
  10. 10.
    A. Proń, J. Laska, J.-E. Österholm, and P. Smith, Polymer 34, 4235 (1993).CrossRefGoogle Scholar
  11. 11.
    H. Taleghani, M. Aleahmad, and H. Eisazadeh, World Appl. Sci. J. 6, 1607 (2009).Google Scholar
  12. 12.
    P. S. Rao and D. Sathyanarayana, Polymer 43, 5051 (2002).CrossRefGoogle Scholar
  13. 13.
    G. Sharma, D. Pathania, M. Naushad, and N. Kothiyal, Chem. Eng. J. 251, 413 (2014).CrossRefGoogle Scholar
  14. 14.
    M. S. Lashkenari, H. Eisazadeh, J. Vinyl Addit. Technol. 22 (3), 267 (2016).CrossRefGoogle Scholar
  15. 15.
    D. T. Seshadri and N. V. Bhat, Indian J. Fibre Text. Res. 30, 204 (2005).Google Scholar
  16. 16.
    Z. Kucekova, V. Kasparkova, P. Humpolicek, P. Sevcikova, and J. Stejskal, Chem. Pap. 67, 1103 (2013).CrossRefGoogle Scholar
  17. 17.
    M. R. Gizdavic-Nikolaidis, J. R. Bennett, S. Swift, A. J. Easteal, and M. Ambrose, Acta Biomater. 7, 4204 (2011).CrossRefGoogle Scholar
  18. 18.
    M. S. Lashkenari, H. Eisazadeh, and K. Soltani, Polym.-Plast Technol. Eng. 54, 1547 (2015).CrossRefGoogle Scholar
  19. 19.
    M. Kooti, P. Kharazi, and H. Motamedi, J. Taiwan Inst. Chem. Eng. 45, 2698 (2014).CrossRefGoogle Scholar
  20. 20.
    S. Kant, S. Kalia, and A. Kumar, J. Alloys Compd. 578, 249 (2013).CrossRefGoogle Scholar
  21. 21.
    J. C.-C. Wu, S. Ray, M. Gizdavic-Nikolaidis, J. Jin, and R. P. Cooney, Synth. Met. 217, 202 (2016).CrossRefGoogle Scholar
  22. 22.
    M. A. Abdel-Rahman, Y. Tashiro, and K. Sonomoto, Biotechnol. Adv. 31, 877 (2013).CrossRefGoogle Scholar
  23. 23.
    H. G. Taleghani, M. Aleahmad, and H. Eisazadeh, Synth. Met. 161, 2638 (2012).CrossRefGoogle Scholar
  24. 24.
    J. De Graaf, A. Van Dillen, K. De Jong, and D. Koningsberger, J. Catal. 203, 307 (2001).CrossRefGoogle Scholar
  25. 25.
    B. Davodi, M. S. Lashkenari, and H. Eisazadeh, Synth. Met. 161, 1207 (2011).CrossRefGoogle Scholar
  26. 26.
    M. S. Lashkenari, B. Davodi, and H. Eisazadeh, Korean J. Chem. Eng. 28, 1532 (2011).CrossRefGoogle Scholar
  27. 27.
    M. Ghorbani, M. S. Lashkenari, and H. Eisazadeh, High Perform. Polym. 23, 513 (2011).CrossRefGoogle Scholar
  28. 28.
    H. Zuo, D. Wu, and R. Fu, J. Appl. Polym. Sci. 125, 3537 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Hamidreza Ghafouri Taleghani
    • 1
  • Hossein Fakhraiee
    • 2
  • Hossein Zare
    • 3
  1. 1.Faculty of Chemical EngineeringUniversity of MazandaranBabolsarIran
  2. 2.Faculty of Chemical EngineeringMalek-ashtar University of TechnologyTehranIran
  3. 3.Faculty of Chemical Engineering, Buein Zahra Technical UniversityBuein ZahraQazvinIran

Personalised recommendations