Polymer Science, Series B

, Volume 59, Issue 6, pp 655–664 | Cite as

Synthesis of Block Copolymers of Styrene with D,L-Lactide by the Sequential Controlled Cationic Polymerization and Ring-Opening Anionic Polymerization

  • P. A. Nikishev
  • Yu. A. Piskun
  • I. V. Vasilenko
  • L. V. Gaponik
  • P. S. Timashev
  • A. A. Akovantseva
  • S. V. Kostjuk
Polymerization

Abstract

The cationic polymerization of styrene initiated by the system 2-chloro-2-phenylpropane–TiCl4–pyridine is studied in a mixture CH2Cl2n-hexane at a temperature of –80°С. It is shown that under these conditions polymerization occurs via the living mechanism at [monomer]: [initiator] ≤ 100. The method of preparing polystyrenes with terminal primary hydroxyl groups (Mn = 4000–10000 g/mol) by the sequential controlled cationic polymerization of styrene and the in situ alkylation of 4-phenoxy-1-butanol by polystyrene macrocations is proposed. The resulting functionalized polystyrenes are used as macroinitiators of anionic-coordination ring-opening polymerization of D,L-lactide in the presence of tin bis(2-ethyl hexanoate) [Sn(Oct)2] in toluene at 80°С. Copolymers polystyrene-block-poly(D,L-lactide) with the controlled length of the poly(D,L-lactide) block (Mn = 10000–17000 g/mol) and a relatively low molecular-weight distribution (Mw/Mn = 1.6–1.8) are synthesized. Formation of the block copolymers is confirmed by 1Н NMR spectroscopy, gel-permeation chromatography, and atomic force microscopy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Storey and D. W. Baugh, Polymer 42, 2321 (2001).CrossRefGoogle Scholar
  2. 2.
    R. F. Storey, B. J. Chisholm, and K. R. Choate, J. Macromol. Sci., Part A: Pure Appl. Chem. 31 (8), 969 (1994).CrossRefGoogle Scholar
  3. 3.
    Z. Fodor and R. Faust, J. Macromol. Sci., Part A: Pure Appl. Chem. 33 (3), 305 (1996).CrossRefGoogle Scholar
  4. 4.
    J. P. Kennedy, Thermoplastic Elastomers, Ed. by G. Holden, N. R. Legger, R. P. Quirk, and H. E. Schrooder (Hanser Publ., Munich, 1996).Google Scholar
  5. 5.
    X. Hou, Q. Li, and A. Cao, Polym. Int. 67, 1159 (2014).CrossRefGoogle Scholar
  6. 6.
    T. Thurn-Albrecht, R. Steiner, J. DeRouchey, C. M. Stafford, E. Huang, M. Bal, M. Tuominen, C. J. Hawker, and T. R. Russell, Adv. Mater. 12 (11), 787 (2000).CrossRefGoogle Scholar
  7. 7.
    R. B. Cheyne and M. G. Moffitt, Langmuir 21 (23), 10297 (2005).CrossRefGoogle Scholar
  8. 8.
    S. E. Querelle, E. A. Jackson, E. L. Cussler, and M. A. Hillmyer, ACS Appl. Mater. Int. 5, 5044 (2013).CrossRefGoogle Scholar
  9. 9.
    R. Francis and D. K. Baby, Ind. Eng. Chem. Res. 54 (46), 17945 (2014).CrossRefGoogle Scholar
  10. 10.
    M. Ulbricht, Polymer 47, 2217 (2006).CrossRefGoogle Scholar
  11. 11.
    D. Grande, J. Penelle, P. Davidson, I. Beurroies, and R. Denoyel, Microporous Mesoporous Mater. 140, 34 (2011).CrossRefGoogle Scholar
  12. 12.
    M. Dirany, M. Vayer, C. Sinturel, R. Erre, P. Lacroix- Desmazes, and B. Boutevin, Polym. Prepr. 42, 302 (2008).Google Scholar
  13. 13.
    R. Majdoub, T. Antoun, B. le Droumaguet, M. Benzina, and D. Grande, React. Funct. Polym. 72, 495 (2012).CrossRefGoogle Scholar
  14. 14.
    J. Rzayev, Macromolecules 42, 2135 (2009).CrossRefGoogle Scholar
  15. 15.
    T. S. Bailey, J. Rzayev, and M. A. Hillmyer, Macromolecules 39, 8772 (2006).CrossRefGoogle Scholar
  16. 16.
    D. L. Morgan, N. Martinez-Castro, and R. F. Storey, Macromolecules 43, 8724 (2010).CrossRefGoogle Scholar
  17. 17.
    R. F. Storey, D. W. Baugh, and K. R. Choate, Polymer 40, 3083 (1999).CrossRefGoogle Scholar
  18. 18.
    J. E. Puskas, S. W. P. Chan, K. B. Mcauley, G. Kaszas, and S. Shaikh, J. Polym. Sci., Part A: Polym. Chem. 45, 1778 (2007).CrossRefGoogle Scholar
  19. 19.
    G. Kaszas, J. E. Puskas, J. P. Kennedy, and W. C. Hager, J. Polym. Sci., Part A: Polym. Chem. 29, 427 (1991).CrossRefGoogle Scholar
  20. 20.
    Z. Fodor, M. Gyor, H. C. Wang, and R. Faust, J. Macromol. Sci., Pure Appl. Chem. 30 (5), 349 (1993).CrossRefGoogle Scholar
  21. 21.
    S. V. Kostjuk, Polym. Bull. 51, 277 (2004).CrossRefGoogle Scholar
  22. 22.
    K. Verebelyi and B. Ivan, Polymer 53, 3426 (2012).CrossRefGoogle Scholar
  23. 23.
    J. E. Puskas, S. W. P. Chan, K. B. McAuley, S. Shaikh, and G. J. Kaszas, J. Polym. Sci., Part A: Polym. Chem. 43, 5394 (2005).CrossRefGoogle Scholar
  24. 24.
    G. J. Kaszas and J. E. Puskas, Polym. React. Eng. 2, 251 (1994).CrossRefGoogle Scholar
  25. 25.
    S. V. Kostjuk, F. N. Kaputsky, V. P. Mardykin, L. V. Gaponik, and L. M. Antipin, Polym. Bull. 49, 251 (2002).CrossRefGoogle Scholar
  26. 26.
    S. V. Kostjuk, A. Yu. Dubovik, I. V. Vasilenko, A. N. Frolov, and F. N. Kaputsky, Eur. Polym. J. 43, 968 (2007).CrossRefGoogle Scholar
  27. 27.
    S. V. Kostjuk, A. Yu. Dubovik, I. V. Vasilenko, V. P. Mardykin, L. V. Gaponik, F. N. Kaputsky, and L. M. Antipin, Polym. Bull. 52, 227 (2004).CrossRefGoogle Scholar
  28. 28.
    A. V. Radchenko, S. V. Kostjuk, I. V. Vasilenko, F. Ganachaud, and F. N. Kaputsky, Eur. Polym. J. 43, 2576 (2007).CrossRefGoogle Scholar
  29. 29.
    K. V. Zaitsev, Yu. A. Piskun, Y. F. Oprunenko, S. S. Karlov, G. S. Zaitseva, I. V. Vasilenko, A. V. Churakov, and S. V. Kostjuk, J. Polym. Sci., Part A: Polym. Chem. 52, 1237 (2014).CrossRefGoogle Scholar
  30. 30.
    A. Yu. Piskun, I. V. Vasilenko, S. V. Kostjuk, K. V. Zaitsev, G. S. Zaitseva, and S. S. Karlov, J. Polym. Sci., Part A: Polym. Chem. 48, 1230 (2010).CrossRefGoogle Scholar
  31. 31.
    B. O. Leung, A. P. Hitchcock, J. L. Brash, A. Scholl, and A. Doran, Macromolecules 42, 1679 (2009).CrossRefGoogle Scholar
  32. 32.
    Yu-Ch. Tseng and S. B. Darling, Polymers 2, 470 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • P. A. Nikishev
    • 1
    • 2
  • Yu. A. Piskun
    • 1
  • I. V. Vasilenko
    • 1
  • L. V. Gaponik
    • 1
  • P. S. Timashev
    • 3
    • 4
  • A. A. Akovantseva
    • 3
  • S. V. Kostjuk
    • 1
  1. 1.Research Institute for Physical Chemical Problems of the Belarusian State UniversityMinskBelarus
  2. 2.Faculty of ChemistryBelarusian State UniversityMinskBelarus
  3. 3.Institute of Photon Technologies, Crystallography and Photonics Scientific CenterRussian Academy of SciencesTroistk, MoscowRussia
  4. 4.Institute for Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia

Personalised recommendations