Polymer Science, Series B

, Volume 59, Issue 6, pp 639–649 | Cite as

Effects of Various Amounts of New Hepta-Ether as the Internal Donor on the Polymerization of Propylene with and without the External Donor

  • Seyed Heidar Mirjahanmardi
  • Faramarz Afshar Taromi
  • Roya Zahedi
  • Mehdi Nekoomanesh Haghighi
Catalysis
  • 1 Downloads

Abstract

The new hepta-ether compound as the internal donor was synthesized using the Williamson reaction of dipentaerythritol with sodium hydride as the strong base and iodomethane as the alkyl halide. The hepta-ether compound was characterized by NMR, FTIR, and GC techniques. The MgCl2-supported catalysts incorporated with different amounts of hepta-ether compound as the internal donor and without the internal donor were synthesized and characterized. The propylene polymerization was carried out using these catalysts in the presence of triethylaluminum as a co-catalyst and hydrogen as a chain transfer agent, with and without the external donor. The effect of a new internal donor on propylene polymerization using prepared MgCl2-supported Ziegler-Natta catalysts was investigated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Albizzati and M. Galimberti, Catal. Today 41,159 (1998).CrossRefGoogle Scholar
  2. 2.
    J. Pater, G. Weickert, and W. P. van Swaaij, Chem. Eng. Sci. 57, 3461 (2002).CrossRefGoogle Scholar
  3. 3.
    L. Zhang, Z. Fu, and Z. Fan, Macromol. Res. 18, 695 (2010).CrossRefGoogle Scholar
  4. 4.
    K. Thushara, E. S. Gnanakumar, R. Mathew, T. Ajithkumar, P. Rajamohanan, S. Bhaduri, and C. S. Gopinath, Dalton Trans. 41,11311 (2012).CrossRefGoogle Scholar
  5. 5.
    J. Kumawat, V. Kumar Gupta, and K. Vanka, Eur. J. Inorg. Chem. 2014, 5063 (2014).CrossRefGoogle Scholar
  6. 6.
    N. Kashiwa, J. Polym. Sci., Part A: Polym. Chem. 42, 1 (2004).CrossRefGoogle Scholar
  7. 7.
    A. Lima, A. P. Azeredo, M. Nele, S. Liberman, and J. C. Pinto, Macromol. Symp. 344, 86 (2014).CrossRefGoogle Scholar
  8. 8.
    E. Groppo, K. Seenivasan, and C. Barzan, Catal. Sci. Technol. 3, 858 (2013).CrossRefGoogle Scholar
  9. 9.
    A. Bazhenov, M. Linnolahti, T. A. Pakkanen, P. Denifl, and T. Leinonen, J. Phys. Chem. C 118, 4791 (2014).CrossRefGoogle Scholar
  10. 10.
    T. B. Mikenas, E. I. Koshevoy, V. A. Zakharov, and M. I. Nikolaeva, Macromol. Chem. Phys. 215, 1707 (2014).CrossRefGoogle Scholar
  11. 11.
    E. S. Gnanakumar, R. R. Gowda, S. Kunjir, T. Ajithkumar, P. Rajamohanan, D. Chakraborty, and C. S. Gopinath, ACS Catal. 3, 303 (2013).CrossRefGoogle Scholar
  12. 12.
    D. V. Stukalov, V. A. Zakharov, A. G. Potapov, and G. D. Bukatov, J. Catal. 266, 39 (2009).CrossRefGoogle Scholar
  13. 13.
    A. G. Potapov and L. V. Politanskaya, J. Mol. Catal. A: Chem. 368–369, 159 (2013).CrossRefGoogle Scholar
  14. 14.
    K. Tangjituabun, B. Jongsomjit, and P. Praserthdam, Catal. Lett. 109, 147 (2006).CrossRefGoogle Scholar
  15. 15.
    A. S. Bazhenov, P. Denifl, T. Leinonen, A. Pakkanen, M. Linnolahti, and T. A. Pakkanen, J. Phys. Chem. C 118, 27878 (2014).CrossRefGoogle Scholar
  16. 16.
    P. Li, S. Tu, T. Xu, Z. Fu, and Z. Fan, J. Appl. Polym. Sci. 132, 41689 (2015).Google Scholar
  17. 17.
    T. Taniike, T. Wada, I. Kouzai, S. Takahashi, and M. Terano, Macromol. Res. 18, 839 (2010).CrossRefGoogle Scholar
  18. 18.
    F. Capone, L. Rongo, M. D’Amore, P. H. Budzelaar, and V. Busico, J. Phys. Chem. C 117, 24345 (2013).CrossRefGoogle Scholar
  19. 19.
    J. C. Chadwick, G. Morini, G. Balbontin, I. Camurati, J. J. Heere, I. Mingozzi, and F. Testoni, Macromol. Chem. Phys. 202, 1995 (2001).CrossRefGoogle Scholar
  20. 20.
    D. Ribour, R. Spitz, and V. Monteil, J. Polym. Sci., Part A: Polym. Chem. 48, 2631 (2010).CrossRefGoogle Scholar
  21. 21.
    T. Taniike and M. Terano, J. Catal. 293, 39 (2012).CrossRefGoogle Scholar
  22. 22.
    J. Qiao, M. Guo, L. Wang, D. Liu, X. Zhang, L. Yu, W. Song, and Y. Liu, Polym. Chem. 2, 1611 (2011).CrossRefGoogle Scholar
  23. 23.
    M. D. F. V. Marques, R. D. S. Cardoso, and M. G. da Silva, Appl. Catal. A 374, 65 (2010).CrossRefGoogle Scholar
  24. 24.
    T. Yono, T. Inoue, S. Ikai, M. Tamura, and M. Shimizu. Eur. Polym. J. 22, 637 (1986).CrossRefGoogle Scholar
  25. 25.
    J. C. W. Chien, Y. Hu, and J. C. Vizzini. J. Polym. Sci., Part A: Polym. Chem. 28, 273 (1990).CrossRefGoogle Scholar
  26. 26.
    K. Soga, T. Shiono, and Y. Doi, Makromolek. Chem. 189, 1531 (1988).CrossRefGoogle Scholar
  27. 27.
    P. Pino and R. Mulhaupt. Angew. Chem. 19, 857 (1980).CrossRefGoogle Scholar
  28. 28.
    P. C. Barb, G. Cecchin, and L. Noristi, Adv. Polym. Sci. 81, 1 (1987).Google Scholar
  29. 29.
    R. Zahedi, F. Afshar Taromi, S. H. Mirjahanmardi, M. Nekoomanesh Haghighi, K. Jadidi, and R. Jamjah, Adv. Polym. Technol. (2015) (in press). doi 10.1002/adv.21651Google Scholar
  30. 30.
    R. Zahedi, F. Taromi, S. H. Mirjahanmardi, M. N. Haghighi, K. Jadidi, and R. Jamjah, Chin. J. Polym. Sci. 34, 268 (2016).CrossRefGoogle Scholar
  31. 31.
    S. H. Mirjahanmardi, F. Afshar Taromi, R. Zahedi, M. Nekoomanesh Haghighi, R. Jamjah, and Gh. Jafari Asl, Polym. Sci., Ser. B 58 (6), 619 (2016).CrossRefGoogle Scholar
  32. 32.
    R. Zahedi, F. Afshar Taromi, S. H. Mirjahanmardi, M. Nekoomanesh Haghighi, K. Jadidi, and R. Jamjah, Polym. Sci., Ser. B 58 (2), 143 (2016).CrossRefGoogle Scholar
  33. 33.
    B. G. Song, Y. H. Choi, and S.-K. Ihm, J. Appl. Polym. Sci. 130, 851 (2013).CrossRefGoogle Scholar
  34. 34.
    H. Hamaki, W. Hirahata, Y. Fujiwara, S. Kimata, H. Hama, and K. Ikeda, US Patent No. 2013/0109789A1 (2013).Google Scholar
  35. 35.
    R. Zahedi, F. Afshar-Taromi, S. H. Mirjahanmardi, M. Nekoomanesh-Haghighi, Kh. Jadidi, and R. Jamjah, Chin. J. Polym. Sci. 34 (3), 268.Google Scholar
  36. 36.
    B. G. Song and S.-K. Ihm, J. Appl. Polym. Sci. 131, 40536 (2014).CrossRefGoogle Scholar
  37. 37.
    N. Cui, Y. Ke, H. Li, Z. Zhang, C. Guo, Z. Lv, and Y. Hu, J. Appl. Polym. Sci. 99, 1399 (2006).CrossRefGoogle Scholar
  38. 38.
    L. Lu, H. Niu, and J. Y. Dong, J. Appl. Polym. Sci. 124, 1265 (2012).CrossRefGoogle Scholar
  39. 39.
    B. Chen, Q.-F. Zhang, L.-P. Zhao, X.-Q. Zhang, and H.-X. Zhang, Polym. Bull. 70, 2793 (2013).CrossRefGoogle Scholar
  40. 40.
    K. M. Bichinho, G. P. Pires, J. H. Z. dos Santos, M. M. de Camargo Forte, and C. R. Wolf, Anal. Chim. Acta 512, 359 (2004).CrossRefGoogle Scholar
  41. 41.
    T. Taniike, T. Funako, and M. Terano, J. Catal. 311, 33 (2014).CrossRefGoogle Scholar
  42. 42.
    U. C. Makwana, K. J. Singala, R. B. Patankar, S. C. Singh, and V. K. Gupta, J. Appl. Polym. Sci. 125, 896 (2012).CrossRefGoogle Scholar
  43. 43.
    H. Chang, H. Li, T. Zheng, Q. Zhou, L. Zhang, and Y. Hu, J. Polym. Res. 21, 554 (2014).CrossRefGoogle Scholar
  44. 44.
    Q. Zhou, T. Zheng, H. Li, Q. Li, Y. Zhang, L. Zhang, and Y. Hu, Ind. Eng. Chem. Res. 53, 17929 (2014).CrossRefGoogle Scholar
  45. 45.
    G. Bukatov, S. Sergeev, V. Zakharov, and A. Potapov, Kinet. Catal. 49, 782 (2008).CrossRefGoogle Scholar
  46. 46.
    N. Chumachenko, V. Zakharov, G. Bukatov, and S. Sergeev, Appl. Catal., A 469, 512 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Seyed Heidar Mirjahanmardi
    • 1
  • Faramarz Afshar Taromi
    • 2
  • Roya Zahedi
    • 3
  • Mehdi Nekoomanesh Haghighi
    • 4
  1. 1.Department of Polymer EngineeringAmirkabir University of Technology-Mahshahr CampusMahshahrIran
  2. 2.Department of Polymer EngineeringAmirkabir University of TechnologyTehranIran
  3. 3.Department of ChemistryAmirkabir University of TechnologyTehranIran
  4. 4.Iran Polymer and Petrochemical Institute (IPPI)TehranIran

Personalised recommendations