Polymer Science, Series B

, Volume 59, Issue 6, pp 674–688 | Cite as

Synthesis of Graft Copolyimides with Poly(N,N-dimethylamino-2-ethyl methacrylate) Side Chains and Hybrid Nanocomposites with Silver Nanoparticles

  • T. K. Meleshko
  • A. S. Ivanova
  • A. V. Kashina
  • I. V. Ivanov
  • T. N. Nekrasova
  • N. V. Zakharova
  • A. P. Filippov
  • A. V. Yakimansky
Synthesis
  • 1 Downloads

Abstract

The controlled radical polymerization of N,N-dimethylamino-2-ethyl methacrylate on polyimide multicenter macroinitiators under the action of the activating complex of Cu(I) with nitrogen-containing ligands is studied. The complex investigation of the kinetics of copolymerization and the molecular-mass characteristics of the products is performed. The polarity of a medium and the nature of the nitrogen-containing ligand used to prepare the catalytic complex considerably affect the rate of polymerization and the composition and molecular-mass characteristics of the product. Process conditions that enable the synthesis of regularly graft copolyimides with poly(N,N-dimethylamino-2-ethyl methacrylate) side chains are determined. It is shown that the products of grafting copolymerization may be used as a nanoreactor and a stabilizing agent for the template synthesis of composite structures containing silver nanoparticles in the absence of additional reducing agents.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Zhang, J. Xia, and K. Matyjaszewski, Macromolecules 31, 5167 (1998).CrossRefGoogle Scholar
  2. 2.
    S. Kunyan, Z. Xin, W. Zhiming, X. Yanzhi, L. Hongchao, and L. Yujin, Langmuir 28, 153 (2012).CrossRefGoogle Scholar
  3. 3.
    D. Gromadzki, P. Štĕpánek, and R. Makuška, Mater. Chem. Phys. 137, 709 (2013).CrossRefGoogle Scholar
  4. 4.
    Y. Xu, S. Bolisetty, M. Drechsler, B. Fang, J. Yuan, M. Ballauff, and A. H. E. Müller, Polymer 49, 3957 (2008).CrossRefGoogle Scholar
  5. 5.
    X. Han, X. Zhang, H. Zhu, Q. Yin, H. L. Liu, and Y. Hu, Langmuir 29, 1024 (2013).CrossRefGoogle Scholar
  6. 6.
    F. A. Plamper, A. Schmalz, E. Penott-Chang, M. Drechsler, A. Jusufi, M. Ballauff, and A. H. E. Müller, Macromolecules 40, 5689 (2007).CrossRefGoogle Scholar
  7. 7.
    A. Car, P. Baumann, J. T. Duskey, M. Chami, N. Bruns, and W. Meier, Biomacromolecules 15, 3235 (2014).CrossRefGoogle Scholar
  8. 8.
    Yo. Chen, L. Wang, H. Yu, Zain-Ul-Abdin, R. Sun, G. Jing, R. Tong, and Z. Deng, Beilstein J. Org. Chem. 12, 939 (2016).CrossRefGoogle Scholar
  9. 9.
    C. Zhu, S. Jung, S. Luo, F. Meng, X. Zhu, T. G. Park, and Z. Zhong, Biomaterials 31, 2408 (2010).CrossRefGoogle Scholar
  10. 10.
    K. Yoncheva, K. Kamenova, T. Perperieva, V. Hadjimitova, P. Donchev, K. Kaloyanov, S. Konstantinov, M. Kondeva-Burdina, V. Tzankova, and P. Petrov, Int. J. Pharm. 490, 298 (2015).CrossRefGoogle Scholar
  11. 11.
    V. Tzankova, C. Gorinova, M. Kondeva-Burdina, R. Simeonova, S. Philipov, S. Konstantinov, P. Petrov, D. Galabov, and K. Yoncheva, Food Chem. Toxicol. 97, 1 (2016).CrossRefGoogle Scholar
  12. 12.
    K. Chen, F. Hu, H. Gub, and H. Xu, J. Mater. Chem. B 5, 435 (2017).CrossRefGoogle Scholar
  13. 13.
    H. Yao, D. Wei, X. Che, L. Cai, L. Tao, L. Liu, L. Wud, and G. -Q. Chen, Polym. Chem. 7, 5957 (2016).CrossRefGoogle Scholar
  14. 14.
    D. Vasquez, T. Einfalt, W. Meier, and C. G. Palivan, Langmuir 32, 10235 (2016).CrossRefGoogle Scholar
  15. 15.
    R. A. Cordeiro, D. Farinha, N. Rocha, A. C. Serra, H. Faneca, and J. F. J. Coelho, Macromol. Biosci. 15, 215 (2015).CrossRefGoogle Scholar
  16. 16.
    R. A. Cordeiro, D. Santo, D. Farinha, A. C. Serra, H. Faneca, and J. F. J. Coelho, Acta Biomater. 47, 113 (2017).CrossRefGoogle Scholar
  17. 17.
    L. Zhang, F. Jin, T. Zhang, L. Zhang, and J. Xing, Int. J. Biol. Macromol. 85, 252 (2016).CrossRefGoogle Scholar
  18. 18.
    W. Yandi, S. Mieszkin, A. Fino, P. Martin-Tanchereau, M. E. Callow, J. A. Callow, L. Tyson, A. S. Clare, and T. Ederth, Biofouling 32, 609 (2016).CrossRefGoogle Scholar
  19. 19.
    J. R. C. Costa, C. Correia, J. R. Góis, and S. M. C. Silva, Prog. Org. Coat. 104, 34 (2017).CrossRefGoogle Scholar
  20. 20.
    J. Zhou, X. Chen, and J. Ma, Dyes Pigm. 139, 102 (2017).CrossRefGoogle Scholar
  21. 21.
    M. Protat, N. Bodin, F. Gobeaux, F. Malloggi, and J. Daillan, Langmuir 32, 10912 (2016).CrossRefGoogle Scholar
  22. 22.
    G. Han, Y. Ju, and H. Zhao, Polym. Chem. 7, 1197 (2016).CrossRefGoogle Scholar
  23. 23.
    R. Sepehrifar, R. I. Boysen, B. Danylec, and Y. Yang, Anal. Chim. Acta 963, 153 (2017).CrossRefGoogle Scholar
  24. 24.
    R. Sepehrifar, R. I. Boysen, B. Danylec, and Y. Yang, Anal. Chim. Acta 917, 117 (2016).CrossRefGoogle Scholar
  25. 25.
    H. Hu, X. J. Hou, X. C. Wang, J. J. Nie, Q. Cai, and F. J. Xu, Polym. Chem. 7, 3107 (2016).CrossRefGoogle Scholar
  26. 26.
    N. K. Mogha, S. Gosain, and D. T. Masram, Appl. Surf. Sci. 396, 1427 (2017).CrossRefGoogle Scholar
  27. 27.
    G. Gao, F. Ko, and J. F. Kadla, Macromol. Mater. Eng. 300, 836 (2015).CrossRefGoogle Scholar
  28. 28.
    D. O. Shvedchenko, T. N. Nekrasova, O. V. Nazarova, P. A. Buffat, and E. I. Suvorova, J. Nanopart. Res. 17, 275 (2015).CrossRefGoogle Scholar
  29. 29.
    L. V. Trandafilović, A. S. Luyt, N. Bibić, S. Dimitrijević-Branković, M. K. Georges, T. Radhakrishnan, and V. Djoković, Colloids Surf., A 414, 17 (2012).CrossRefGoogle Scholar
  30. 30.
    S. Zhai, H. Y. Hong, Y. F. Zhou, and D. Y. Yan, Sci. China: Chem. 53, 1114 (2010).CrossRefGoogle Scholar
  31. 31.
    K. Esumi, A. Suzuki, A. Yamahira, and K. Torigoe, Langmuir 16, 2604 (2000).CrossRefGoogle Scholar
  32. 32.
    H. Sun, Z. Gao, L. Yang, L. Gao, X. Lv, Colloid Polym. Sci. 288, 1713 (2010).CrossRefGoogle Scholar
  33. 33.
    X. Huang, Y. Xiao, W. Zhang, and M. Lang, Appl. Surf. Sci. 258, 2655 (2012).CrossRefGoogle Scholar
  34. 34.
    N. Yao, W. Lin, X. Zhang, H. Gu, and L. Zhang, J. Polym. Sci., Part A: Polym. Chem. 54, 186 (2016).CrossRefGoogle Scholar
  35. 35.
    X. Zhang, J. Xia, and K. Matyjaszewski, Macromolecules 31, 5167 (1998).CrossRefGoogle Scholar
  36. 36.
    X. Tang, X. Liang, L. Gao, X. Fan, and Q. Zhou, J. Polym. Sci., Part A: Polym. Chem. 48, 2564 (2010).CrossRefGoogle Scholar
  37. 37.
    K. B. Guice and Y. L. Loo, Macromolecules 39, 2474 (2006).CrossRefGoogle Scholar
  38. 38.
    L.-H. Gan, P. Ravi, B. W. Mao, and K.-C. Tam, J. Polym. Sci., Part A: Polym. Chem. 41, 2688 (2003).CrossRefGoogle Scholar
  39. 39.
    X. Han, X. Zhang, H. Zhu, Q. Yin, H. Liu, and Y. Hu, Langmuir 29, 1024 (2013).CrossRefGoogle Scholar
  40. 40.
    P. Ravi, S. L. Sin, L. H. Gan, Y. Y. Gan, K. C. Tam, X. L. Xia, and X. Hu, Polymer 46, 137 (2005).CrossRefGoogle Scholar
  41. 41.
    Z. Fang and J. P. Kennedy, J. Polym. Sci., Part A: Polym. Chem. 40, 3662 (2002).CrossRefGoogle Scholar
  42. 42.
    C. J. Cheng, S. S. Gong, Q. L. Fu, L. Shen, Z. B. Liu, Y. L. Qiao, and C. Q. Fu, Polym. Bull. 66, 735 (2011).CrossRefGoogle Scholar
  43. 43.
    W. Xu, I. Choi, F. A. Plamper, C. V. Synatschke, A. H. E. Müller, Y. B. Melnichenko, and V. V. Tsukruk, Macromolecules 47, 2112 (2014).CrossRefGoogle Scholar
  44. 44.
    A. Schmalz, M. Hanisch, H. Schmalz, and A. H. E. Müller, Polymer 51, 1213 (2010).CrossRefGoogle Scholar
  45. 45.
    J. Pietrasik, B. S. Sumerlin, R. Y. Lee, and K. Matyjaszewski, Macromol. Chem. Phys. 208, 30 (2007).CrossRefGoogle Scholar
  46. 46.
    M. Xie, J. Dang, H. Han, W. Wang, J. Liu, and X. He, Macromolecules 41, 9004 (2008).CrossRefGoogle Scholar
  47. 47.
    D. Hu, Z. Cheng, J. Zhu, and X. Zhu, Polymer 46, 7563 (2005).CrossRefGoogle Scholar
  48. 48.
    M. Wang, S. Zou, G. Guerin, L. Shen, K. Deng, M. Jones, G. C. Walker, G. D. Scholes, and M. A. Winnik, Macromolecules 41, 6993 (2008).CrossRefGoogle Scholar
  49. 49.
    S. Samanta, D. P. Chatterjee, S. Manna, A. Mandal, A. Garai, and A. K. Nandi, Macromolecules 42, 3112 (2009).CrossRefGoogle Scholar
  50. 50.
    L. Ding, Y. Huang, Y. Zhang, J. Deng, and W. Yang, Macromolecules 44, 736 (2011).CrossRefGoogle Scholar
  51. 51.
    M. Xie, J. Dang, H. Han, W. Wang, J. Liu, X. He, and Y. Zhang, Macromolecules 41, 9004 (2008).CrossRefGoogle Scholar
  52. 52.
    A. P. Filippov, E. V. Belyaeva, N. V. Zakharova, A. S. Sasina, D. M. Ilgach, T. K. Meleshko, and A. V. Yakimansky, Colloid Polym. Sci. 293, 555 (2015).CrossRefGoogle Scholar
  53. 53.
    F. S. Ivanova, N. V. Zakharova, A. P. Filippov, T. K. Meleshko, and A. V. Yakimansky, Polym. Sci., Ser. A 59 (3), 281 (2017).CrossRefGoogle Scholar
  54. 54.
    T. K. Meleshko, D. M. Il’gach, N. N. Bogorad, N. V. Kukarkina, E. N. Vlasova, A. V. Dobrodumova, I. I. Malakhova, N. I. Gorshkov, V. D. Krasikov, and A. V. Yakimansky, Polym. Sci., Ser. B 52 (10), 589 (2010).CrossRefGoogle Scholar
  55. 55.
    T. K. Meleshko, D. M. Il’gach, N. N. Bogorad, N. V. Kukarkina, and A. V. Yakimansky, Polym. Sci., Ser. B 56 (2), 118 (2014).CrossRefGoogle Scholar
  56. 56.
    K. Matyjaszewski, Macromolecules 45, 4015 (2012).CrossRefGoogle Scholar
  57. 57.
    S. Tan, J. Li, and Z. Zhang, Macromolecules 44, 7911 (2011).CrossRefGoogle Scholar
  58. 58.
    S. Tan, J. Li, Q. Zhang, and Z. Zhang, Chem. Commun 47, 4544 (2011).CrossRefGoogle Scholar
  59. 59.
    B. S. Sumerlin, D. Neugebauer, and K. Matyjaszewski, Macromolecules 38, 702 (2005).CrossRefGoogle Scholar
  60. 60.
    D. Neugebauer, B. S. Sumerlin, K. Matyjaszewski, B. Goodhart, and S. S. Sheiko, Polymer 45, 8173 (2004).CrossRefGoogle Scholar
  61. 61.
    Hydrogen-Bonded Interpolymer Complexes. Formation, Srtucture And Applications, Ed. by V. Khutoranskiy and G. Staikos (World Sci., Singapore, 2009).Google Scholar
  62. 62.
    R. Arnold and S. R. Caplan, Trans. Faraday Soc. 51, 857 (1955).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. K. Meleshko
    • 1
  • A. S. Ivanova
    • 1
  • A. V. Kashina
    • 1
  • I. V. Ivanov
    • 1
  • T. N. Nekrasova
    • 1
  • N. V. Zakharova
    • 1
  • A. P. Filippov
    • 1
  • A. V. Yakimansky
    • 1
    • 2
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of ChemistrySt. Petersburg State UniversityPetrodvorets, St. PetersburgRussia

Personalised recommendations