Advertisement

Polymer Science, Series B

, Volume 59, Issue 6, pp 718–729 | Cite as

Synthesis and Properties of New 2,6-Poly(phenylquinoline)s and Their Composites with 2,1,3-Benzothiadiazole

  • N. V. Matyushina
  • V. M. Svetlichnyi
  • L. A. Myagkova
  • E. L. Aleksandrova
  • E. N. Popova
  • I. V. Gofman
  • M. E. Vylegzhanina
  • A. Ya. Volkov
  • T. E. Sukhanova
  • V. V. Kudryavtsev
Functional Polymers
  • 12 Downloads

Abstract

We synthesized 2,6-poly(phenylquinoline)s, the elementary polymer unit of which contained alkyl carbazole or alkyl indolo[3,2-b]carbazole moieties with C12 and C18 alkyl side chains at nitrogen atoms and the oxygen or phenylamine bridge group between the quinoline cycles. The synthesized polymers form heat-resistant coatings, for which the temperature for 5% weight loss is higher than 450°С. It is demonstrated that introduction of 10 wt % of 2,1,3-benzothiadiazole to the poly(phenylquinoline)s leads to an increase in the photosensitivity of the composite as compared with the original polymers. Structural-morphological studies of the synthesized poly(phenylquinoline)s and their composites were carried out.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Jenekhe, L. Liangde, and M. A. Maksudul, Macromolecules 34, 7315 (2001).CrossRefGoogle Scholar
  2. 2.
    A. P. Kulkarni, X. Kong, and S. A. Jenekhe, Adv. Funct. Mater. 16, 1057 (2006).CrossRefGoogle Scholar
  3. 3.
    S. J. Lee, J. S. Pak, K.-J. Yoon, Y.-I. Kim, S.-H. Jin, S. K. Kang, Y.-S. Gal, S. Kang, J. Y. Lee, J.-W. Kang, S.-H. Lee, H.-D. Park, and J.-J. Kim, Adv. Funct. Mater. 18, 3922 (2008).CrossRefGoogle Scholar
  4. 4.
    E. L. Aleksandrova, V. M. Svetlichnyi, L. A. Myagkova, N. V. Matyushina, T. N. Nekrasova, R. Y. Smyslov, V.D. Pautov, A. R. Tameev, A. V. Vannikov, and V. V. Kudryavtsev, Opt. Spectrosc. 114 (5), 737 (2013).CrossRefGoogle Scholar
  5. 5.
    Suman, A. Bagui, V. Gupta, K. K. Maurya, and S. P. Singh, J. Phys. Chem. C 120, 24615 (2016).CrossRefGoogle Scholar
  6. 6.
    P. A. Troshin, Org. Photonics Photovoltaics 3, 161 (2015).CrossRefGoogle Scholar
  7. 7.
    B. A. D. Neto, A. A. M. Lapis, E. N. da Silva, Jr., and J. Dupont, Eur. J. Org. Chem. 2013 (2), 228–255 (2013).CrossRefGoogle Scholar
  8. 8.
    F. Di Maria, M. Biasiucci, F. P. Di Nicola, E. Fabiano, A. Zanelli, M. Gazzano, E. Salatelli, M. Lanzi, F. Della Sala, G. Gigli, and G. Barbarella, J. Phys. Chem. C 119, 27200 (2015).CrossRefGoogle Scholar
  9. 9.
    E. L. Aleksandrova and Yu. A. Cherkasov, Opt. Spectrosc. 64, 624 (1988).Google Scholar
  10. 10.
    Yu. A. Cherkasov and E. L. Aleksandrova, Opt. Spectrosc. 84, 396 (1998).Google Scholar
  11. 11.
    S. O. Norris and J. K. Stille, Macromolecules 9 (3), 496 (1976).CrossRefGoogle Scholar
  12. 12.
    A. Saeed, M. Irfan, and S. A. Samra, Beilstein J. Org. Chem. 7, 638 (2011).CrossRefGoogle Scholar
  13. 13.
    Y. Wu, Y. Li, S. Gardner, and B. S. Ong, J. Am. Chem. Soc. 127 (2), 615 (2005).CrossRefGoogle Scholar
  14. 14.
    S. A. Jenekhe, L. Lu, and M. M. Alam, Macromolecules 34 (21), 7315 (2001).CrossRefGoogle Scholar
  15. 15.
    A. V. Sidorovich, V. M. Svetlichnyi, I. V. Kalinina, T. I. Zhukova, L. F. Sergeeva, V. V. Kudryavtsev, and I. V. Gofman, Vysokomol. Soedin., Ser. B 35 (9), 1538 (1993).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. V. Matyushina
    • 1
  • V. M. Svetlichnyi
    • 1
  • L. A. Myagkova
    • 1
  • E. L. Aleksandrova
    • 1
  • E. N. Popova
    • 1
  • I. V. Gofman
    • 1
  • M. E. Vylegzhanina
    • 1
  • A. Ya. Volkov
    • 1
  • T. E. Sukhanova
    • 1
  • V. V. Kudryavtsev
    • 1
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations