Polymer Science, Series B

, Volume 59, Issue 6, pp 730–736 | Cite as

Amphiphilic Linear-Branched Copolylactides and Disperse Systems on Their Basis

  • V. V. Istratov
  • V. I. Gomzyak
  • T. V. Krupina
  • V. A. Vasnev
  • S. N. Chvalun
Functional Polymers


The linear-branched copolylactides containing linear side poly(ethylene oxide) blocks are synthesized and characterized. The critical micelle concentrations and the aggregative stability and the dispersity of oil/water emulsions stabilized by these copolymers are estimated. The polylactide microparticles are obtained by emulsification followed by evaporation of an organic solvent using acetylsalicylic acid as a model drug. The structure of copolylactides strongly affects the properties of the microparticles. On one hand, the presence of large poly(ethylene oxide) blocks in the linear-branched macromolecules leads to the formation of colloidal systems with a higher aggregative stability of emulsions and a lower size of particles, and on the other hand, the microparticles formed from these copolymers possess a lower incorporation efficiency relative to water-soluble low-molecular-mass compounds and the profile of the release of these compounds is nonlinear and contains the region of accelerated release.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Wang and S. M. Grayson, Adv. Drug Deliv. Rev. 64 (9), 852 (2012).CrossRefGoogle Scholar
  2. 2.
    C. Tu, L. Zhu, F. Qiu, D. Wang, Y. Su, X. Zhu, and D. Yan, Polymer 54 (8), 2020 (2013).CrossRefGoogle Scholar
  3. 3.
    T. C. Stover, Y. S. Kim, T. L. Lowe, and M. Kester, Biomaterials 29 (3), 359 (2008).CrossRefGoogle Scholar
  4. 4.
    X. Fan, Y. Zhao, W. Xu, and L. Li, Mater. Sci. Eng., C. 62 (1), 943 (2016).CrossRefGoogle Scholar
  5. 5.
    H. Namazi and S. Jafarirad, Int. J. Pharm. 407 (1–2) 167 (2011).CrossRefGoogle Scholar
  6. 6.
    Z. Yang, W. Zhang, J. Liu, and W. Shi, Colloids Surf., B 55 (2), 229 (2007).CrossRefGoogle Scholar
  7. 7.
    F. Wurm and H. Frey, Prog. Polym. Sci. 36 (1), 1 (2011).CrossRefGoogle Scholar
  8. 8.
    S. Gupta, R. Tyagi, V. S. Parmar, S. K. Sharma, and R. Haag, Polymer 53 (15), 3053 (2012).CrossRefGoogle Scholar
  9. 9.
    S. García-Gallego, A. M. Nyström, and M. Malkoch, Prog. Polym. Sci. 48, 85 (2015).CrossRefGoogle Scholar
  10. 10.
    G. N. Njikang and M. Gauthier, “Interfacial properties of amphiphilic dendritic polymers” in Molecular Interfacial Phenomena of Polymers and Biopolymers (Woodhead Publ., Cambridge, 2005) pp. 375–418.CrossRefGoogle Scholar
  11. 11.
    R. Cai, R. Li, J. Qian, A. Xie, and K. Nie, Mater. Sci. Eng., C 33 (4), 2070 (2013).CrossRefGoogle Scholar
  12. 12.
    N. Kumar, M. N. V. Ravikumar, and A. J. Domb, Adv. Drug Delivery Rev. 53 (1), 23 (2001).CrossRefGoogle Scholar
  13. 13.
    H. Tian, Z. Tang, X. Zhuang, X. Chen, and X. Jing, Prog. Polym. Sci. 37 (2), 237 (2012).CrossRefGoogle Scholar
  14. 14.
    Purification of Laboratory Chemicals, Ed. by W. L. E. Armarego and D. D. Perrin (Buttleworth- Heinemann, Berlin, 1998).Google Scholar
  15. 15.
    V. Istratov, H. Kautz, Y.-K. Kim, R. Schubert, and H. Frey, Tetrahedron 59 (22), 4017 (2003).CrossRefGoogle Scholar
  16. 16.
    W. C. Griffin, J. Soc. Cosmet. Chem. 5 (4), 249 (1954).Google Scholar
  17. 17.
    A. V. Goreva, E. I. Shishatskaya, T. G. Volova, and A. J. Sinskey, Polym. Sci., Ser. A 54 (2), 94 (2012).CrossRefGoogle Scholar
  18. 18.
    J. Wu, Y. Zuo, Y. Hu, J. Wang, J. Li, B. Qiao, and D. Jiang, Drug Des., Dev. Ther. 9, 1359 (2015).CrossRefGoogle Scholar
  19. 19.
    Yu. I. Veitser and D. M. Mints, High-molecular Flocculants at Purifying of Water and Sewage (Stroiizdat, Moscow, 1984) [in Russian].Google Scholar
  20. 20.
    K. G. Janoria and A. K. Mitra, Int. J. Pharm. 338, 133 (2007).CrossRefGoogle Scholar
  21. 21.
    S. Fredenberg, M. Wahlgren, and M. Reslow, Int. J. Pharm. 415, 34 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Istratov
    • 1
  • V. I. Gomzyak
    • 2
  • T. V. Krupina
    • 1
  • V. A. Vasnev
    • 1
  • S. N. Chvalun
    • 2
  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Technological UniversityMoscowRussia

Personalised recommendations