Polymer Science Series B

, Volume 58, Issue 6, pp 640–649 | Cite as

Thermodynamic properties of three-dimensional radical polymerization of dimethacrylates and their relation to the structure and properties of network polymers

  • M. P. Berezin
  • V. P. Roshchupkin


For the polymerization of dimethacrylates, thermodynamic properties related to effect of the formed network polymer on the reaction between pendant methacrylate groups and free radicals have been studied. The polymer matrix creates steric hindrances for this reaction and impedes the shrinkage process accompanying the opening of С=С bonds. As a result, internal stresses develop in the polymer, the heat of polymerization of methacrylate groups decreases compared with the polymerization of methyl methacrylate, and the full conversion of double bonds is prevented. The relaxation of internal stresses and of excess free volume leads to the spontaneous cracking of network polymers and causes formation of regular adhesive-shrinkage patterns. The process of superslow relaxation of internal stresses in polymer films has been ascertained, and the mechanochemical model of this process has been advanced. The effect of internal stresses on the physicomechanical properties of polydimethacrylates has been discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. V. Korolev and M. M. Mogilevich, Three-Dimensional Free-Radical Polymerization. Cross-Linked and Hyper-Branched Polymers (Springer, Berlin, 2009).Google Scholar
  2. 2.
    Q. T. Pham, C. T. Lin, C. H. Chen, and C. S. Chern, Polym. Int. 65 (3), 298 (2016).CrossRefGoogle Scholar
  3. 3.
    M. Krasovska and I. M. Barszczevska-Rybarek, Eur. Polym. J. 76, 77 (2016).CrossRefGoogle Scholar
  4. 4.
    J. W. Widra, N. B. Cramer, J. W. Stansbury, and Ch. N. Bowman, Dent. Mater. 30, 605 (2014).CrossRefGoogle Scholar
  5. 5.
    V. I. Irzhak and S. M. Mezhikovskii, Russ. Chem. Rev. 78 (2), 165 (2009).CrossRefGoogle Scholar
  6. 6.
    W. F. Schroeder, M. Aranguren, G. Ellicabe, and J. Borrajo, Eur. Polym. J. 76, 77 (2016).CrossRefGoogle Scholar
  7. 7.
    A. M. Peterson and G. R. Palmese, Macromol. Chem. Phys. 214, 1798 (2013).CrossRefGoogle Scholar
  8. 8.
    V. P. Roshchupkin and S. V. Kurmaz, Russ. Chem. Rev. 73 (3), 225 (2004).CrossRefGoogle Scholar
  9. 9.
    J. Spevacek, B. Schneider, J. Stokr, and P. Vicek, Makromol. Chem. 189, 951 (1988).CrossRefGoogle Scholar
  10. 10.
    J. Jakubiak and L. A. Linden, Polimery 46 (7–8), 522 (2001).Google Scholar
  11. 11.
    M. Wen, L. E. Scriven, and A. V. Mccormick, Macromolecules 35 (1), 112 (2002).CrossRefGoogle Scholar
  12. 12.
    P. Schmidt, D. Schneider, S. Dirlikov, and M. Mihailov, Eur. Polym. J. 11 (3), 229 (1975).CrossRefGoogle Scholar
  13. 13.
    L. Rey, J. Duchet, J. Galy, H. Sauterreau, D. Vouagner, L. Carrion, Polymer 43 (16), 4375 (2002).CrossRefGoogle Scholar
  14. 14.
    Polymerization of Vinyl Compounds, Ed. by D. M. Khem (Khimiya, Moscow, 1973) [in Russian].Google Scholar
  15. 15.
    Yu. M. Sivergin, R. Ya. Pernikes, and S. M. Kireeva, Polycarbonate (met)acrylate (Zinatne, Riga, 1988) [in Russian].Google Scholar
  16. 16.
    V. R. Regel’, A. I. Slutsker, and E. E. Tomashevskii, Kinetic Theory of Solid Body Strength (Nauka, Moscow, 1974) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations