Polymer Science Series B

, Volume 58, Issue 6, pp 659–664 | Cite as

Metathesis polymer based on 5-trimethylsilylbicyclo[2.2.2]oct-2-ene: Synthesis and gas-transport properties

  • D. A. Alent’ev
  • M. V. Bermeshev
  • L. E. Starannikova
  • A. V. Solopchenko
  • Yu. P. Yampol’skii
  • E. Sh. Finkelshtein
Synthesis

Abstract

A new silicon-containing bicyclic monomer 5-trimethylsilylbicyclo[2.2.2]oct-2-ene has been synthesized, and its metathesis polymerization and gas transport properties of the polymer based on it have been studied. The monomer is synthesized by the two-step scheme using the Diels–Alder reaction from 1,3-cyclohexadiene and vinyltrichlorosilane followed by methylation with a Grignard reagent. The resulting 5-trimethylsilylbicyclo[ 2.2.2]oct-2-ene is inactive in metathesis homopolymerization in the presence of first- and second- generation Grubbs catalysts and a Hoveyda–Grubbs catalyst, but it slowly polymerizes when norbornene is present in the reaction mixture. The high-molecular-mass copolymer (M w = 3.0 × 105, M w/M n = 2.8) of 5-trimethylsilylbicyclo[2.2.2]oct-2-ene and norbornene possesses good film-forming properties, and its glass transition temperature is 126°C. The gas-transport properties of the copolymer have been studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. S. Finkelshtein, K. L. Makovetskii, Y. P. Yampol’skii, E. B. Portnykh, I. Y. Ostrovskaya, N. E. Kaliuzhnyi, N. A. Pritula, A. I. Gol’berg, M. S. Yatsenko, and N. A. Platé, Makromol. Chem. 192 (1), 1 (1991).CrossRefGoogle Scholar
  2. 2.
    E. S. Finkelshtein, K. L. Makovetskii, M. L. Gringolts, Y. V. Rogan, T. G. Golenko, L. E. Starannikova, Y. P. Yampolskii, V. P. Shantarovich, and T. Suzuki, Macromolecules 39 (20), 7022 (2006).CrossRefGoogle Scholar
  3. 3.
    M. Gringolts, M. Bermeshev, Y. Yampolskii, L. Starannikova, V. Shantarovich, and E. Finkelshtein, Macromolecules 43 (17), 7165 (2010).CrossRefGoogle Scholar
  4. 4.
    M. V. Bermeshev, A. V. Syromolotov, L. E. Starannikova, M. L. Gringolts, V. G. Lakhtin, Y. P. Yampolskii, and E. S. Finkelshtein, Macromolecules 46 (22), 8973 (2013).CrossRefGoogle Scholar
  5. 5.
    P. P. Chapala, M. V. Bermeshev, L. E. Starannikova, N. A. Belov, V. E. Ryzhikh, V. P. Shantarovich, V. G. Lakhtin, N. N. Gavrilova, Y. P. Yampolskii, and E. S. Finkelshtein, Macromolecules 48 (22), 8055 (2015).CrossRefGoogle Scholar
  6. 6.
    M. Bermeshev, B. Bulgakov, D. Demchuk, M. Filatova, L. Starannikova, and E. Finkelshtein, Polym. J. 45 (7), 718 (2013).CrossRefGoogle Scholar
  7. 7.
    E. S. Finkelshtein, M. V. Bermeshev, M. L. Gringolts, L. E. Starannikova, and Y. P. Yampolskii, Russ. Chem. Rev. 80 (4), 341 (2011).CrossRefGoogle Scholar
  8. 8.
    H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. V. Wagner, B. D. Freeman, and D. J. Cookson, Science 318, 254 (2007).CrossRefGoogle Scholar
  9. 9.
    S. H. Han, N. Misdan, S. Kim, C. M. Doherty, A. J. Hill, and Y. M. Lee, Macromolecules 43 (18), 7657 (2010).CrossRefGoogle Scholar
  10. 10.
    S. Kim and Y. M. Lee, Prog. Polym. Sci. 43, 1 (2015).CrossRefGoogle Scholar
  11. 11.
    P. M. Budd, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib, and C. E. Tattershall, Chem. Commun. 2004, 230 (2004).CrossRefGoogle Scholar
  12. 12.
    B. S. Ghanem, N. B. McKeown, P. M. Budd, and D. Fritsch, Macromolecules 41, 1640 (2008).CrossRefGoogle Scholar
  13. 13.
    Y. Rogan, L. Starannikova, V. Ryzhikh, Y. Yampolskii, P. Bernardo, F. Bazzarelli, J. C. Jansen, and N. B. McKeown, Polym. Chem. 4 (13), 3813 (2013).CrossRefGoogle Scholar
  14. 14.
    M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J. C. Jansen, P. Bernardo, F. Bazzarelli, and N. B. McKeown, Science 339 (6117), 303 (2013).CrossRefGoogle Scholar
  15. 15.
    Olefin Metathesis and Metathesis Polymerization, Ed. by K. J. Ivin and J. C. Mol, (Academic Press, San Diego, CA, 1997), p. 288Google Scholar
  16. 16.
    P. A. Patton and T. J. McCarthy, Macromolecules 20 (4), 778 (1987).CrossRefGoogle Scholar
  17. 17.
    J. G. Hamilton, K. J. Ivin, and J. J. Rooney, Br. Polym. J. 17 (1), 41 (1985).CrossRefGoogle Scholar
  18. 18.
    V. P. Conticello, D. L. Gin, and R. H. Grubbs, J. Am. Chem. Soc. 114 (24), 9708 (1992).CrossRefGoogle Scholar
  19. 19.
    L. Pu, M. W. Wagaman, and R. H. Grubbs, Macromolecules 29 (4), 1138 (1996).CrossRefGoogle Scholar
  20. 20.
    E. A. Ofstead and N. Calderon, Makromol. Chem. 154 (1), 21 (1972).CrossRefGoogle Scholar
  21. 21.
    P. P. Chapala, M. V. Bermeshev, L. E. Starannikova, V. P. Shantarovich, N. N. Gavrilova, V. G. Avakyan, M. P. Filatova, Y. P. Yampolskii, and E. S. Finkelshtein, J. Membr. Sci. 474, 83 (2015).CrossRefGoogle Scholar
  22. 22.
    M. L. Gringolts, M. V. Bermeshev, L. E. Starannikova, Y. V. Rogan, Y. P. Yampol’skii, and E. S. Finkel’shtein, Polym. Sci., Ser. A 51 (11–12), 1233 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. A. Alent’ev
    • 1
  • M. V. Bermeshev
    • 1
  • L. E. Starannikova
    • 1
  • A. V. Solopchenko
    • 2
  • Yu. P. Yampol’skii
    • 1
  • E. Sh. Finkelshtein
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations