Polymer Science Series B

, Volume 58, Issue 3, pp 329–333 | Cite as

Poly(imide ether sulphone) as new soluble high performance polymer

Functional Polymers


Poly(imide ether sulphone) as novel high-performance polymer has been obtained by the condensation polymerization of 4,4'-bis(4-fluorophthalimido) diphenyl ether with 4,4'-sulfonyldiphenol via aromatic nucleophilic substitution reaction. Its structure was confirmed by means of FTIR and NMR spectroscopy, elemental analysis. Differential scanning calorimetry and thermal analysis measurements showed that synthesized polymer possessed high glass transition temperature (T g = 210°C) and good thermal stability with high decomposition temperatures (T d > 480°C). Prepared polymer film showed good light transmittance and mechanical strength.


Polyimide Imide Good Thermal Stability Diphenyl Ether Nucleophilic Substitution Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. E. Cassidy, Thermally Stable Polymers. Synthesis and Characterization (Marcel Dekker, New York, 1980).Google Scholar
  2. 2.
    J. Preston, in Encyclopedia of Polymer Science and Engineering, Ed. by H. F. Mark, 2nd ed. (Wiley-Interscience, NewYork, 1988), vol. 11, p. 381.Google Scholar
  3. 3.
    G. J. Chang, X. Luo, L. Zhang, and R. X. Lin, Macromolecules 40, 8625 (2007).CrossRefGoogle Scholar
  4. 4.
    G. M. Jiang, X. Jiang, and Y. F. Zhu, Polym. Int. 59 7, 896 (2010).CrossRefGoogle Scholar
  5. 5.
    G. J. Chang, L. Yang, S. Y. Liu, R. X. Lin, and J. S. You, Polym. Chem. 6, 697 (2015).CrossRefGoogle Scholar
  6. 6.
    Y. Watanabe, Y. Shibasaki, S. Ando, and M. Ueda, Polym. J. 38, 79 (2006).CrossRefGoogle Scholar
  7. 7.
    G. Chang, Z. F. Shang, and L. Yang, J. Power Sources 282, 401 (2015).CrossRefGoogle Scholar
  8. 8.
    K. Hwang, J. H. Kim, S. Y. Kim, and H. Byun, Energies 7, 1721 (2014).CrossRefGoogle Scholar
  9. 9.
    G. J. Chang, L. Yang, J. X. Yang, Y. W. Huang, L. Zhang, and R. X. Lin, J. Polym. Sci., Part A: Polym. Chem. 52, 313 (2014).CrossRefGoogle Scholar
  10. 10.
    J. C. Feng, G. A. Wen, and W. Huang, Polym. Degrad. Stab. 91,12 (2006).CrossRefGoogle Scholar
  11. 11.
    M. X. Ding, Prog. Polym. Sci. 32, 623 (2007).CrossRefGoogle Scholar
  12. 12.
    P. Gurr, J. Scofield, J. Kim, Q. Fu, S. E. Kentish, and G. G. Qiao, J. Polym. Sci., Part A: Polym. Chem. 52, 3372 (2014).CrossRefGoogle Scholar
  13. 13.
    Y. J. Cho and H. B. Park, Macromol. Rapid Commun. 32, 579 (2011).CrossRefGoogle Scholar
  14. 14.
    I. Sava, S. Chisca, A. Grabczyk, A. Jankowski, M. Sava, E. Grabiec, and M. Bruma, Polym. Int. 64, 154 (2015).CrossRefGoogle Scholar
  15. 15.
    S. H. Hsiao and S. L. Cheng, Polym. Int. 64, 811 (2015).CrossRefGoogle Scholar
  16. 16.
    S. G. Hahm, T. J. Lee, and M. Ree, Adv. Funct. Mater. 17, 1359 (2007).CrossRefGoogle Scholar
  17. 17.
    D. P. Erhard, F. Richter, C. Bartz, and H. W. Schmidt, Macromol. Rapid Commun. 36, 520 (2015).CrossRefGoogle Scholar
  18. 18.
    H. J. Yen, S. M. Guo, J. M. Yeh, and G. S. Liou, J. Polym. Sci., Part A: Polym. Chem. 49, 3637 (2011).CrossRefGoogle Scholar
  19. 19.
    J. N. Hay, Thermochim. Acta 256, 123 (1995).CrossRefGoogle Scholar
  20. 20.
    C. Morfopoulou, A. K. Andreopoulou, and J. K. Kallitsis, J. Polym. Sci., Part A: Polym. Chem. 49, 4325 (2011).CrossRefGoogle Scholar
  21. 21.
    A. A. Asif, B. John, V. L. Rao, and K. N. Ninan, Polym. Int. 59, 986 (2010).CrossRefGoogle Scholar
  22. 22.
    X. Miao, Y. Meng, and X. Li, J. Appl. Polym. Sci. 132, 41910 (2015).Google Scholar
  23. 23.
    Z. Z. Huang, L. M. Yu, S. R. Sheng, W. W. Ge, X. L. Liu, and C. S. Song, J. Appl. Polym. Sci. 108, 1049 (2008).CrossRefGoogle Scholar
  24. 24.
    V. L. Rao, J. Macromol. Sci., Part C: Polym. Rev. 39 4, 655 (1999).CrossRefGoogle Scholar
  25. 25.
    M. Barikani and S. Mehdipour-ataei, J. Polym. Sci., Part A: Polym. Chem. 38, 1487 (2000).CrossRefGoogle Scholar
  26. 26.
    S. Mehdipour-ataei, Eur. Polym. J. 41, 91 (2005).CrossRefGoogle Scholar
  27. 27.
    M. S. Jung, T. Kim, Y. J. Yoon, C. G. Kang, D. M. Yu, J. Y. Lee, H. Kim, and Y. T. Hong, J. Membr. Sci. 459, 72 (2014).CrossRefGoogle Scholar
  28. 28.
    S. Fu, E. S. Sanders, S. S. Kulkarni, G. B. Wenz, and W. J. Koros, Carbon 95, 995 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Guanjun Chang
    • 1
  • Qiaojiao Wang
    • 1
  • Li Xiong
    • 1
  • Li Yang
    • 1
  1. 1.State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials and School of Material Science and EngineeringSouthwest University of Science and TechnologyMianyangChina

Personalised recommendations