Polymer Science Series B

, Volume 58, Issue 2, pp 173–182 | Cite as

The formation of ultralow-density microcellular diane-formaldehyde gels and aerogels

  • E. E. Sheveleva
  • V. G. Pimenov
  • I. V. Pikulin
  • A. M. Sakharov


A diane–formaldehyde aerogel is synthesized via a new two-step approach consisting of the sol–gel polycondensation of diane and formaldehyde. The first stage affords individual polymethylol phenols; at the second stage, these are cured in an alkaline solution at 225°С via the introduction of an additional amount of formaldehyde. The diane–formaldehyde gel is isolated for the first time from the initial solution at a minimum possible concentration of gel formation of 1 mg/mL. The aerogel is obtained during supercritical drying of the diane–formaldehyde gel. The density of the ultralow-density microcellular aerogels reaches 10.9 mg/cm3, and their specific surface area amounts to 340–716 m2/g. The features, structures, and properties of the resulting diane–formaldehyde gels are studied.


Formaldehyde Shrinkage Methylol Linear Shrinkage Formaldehyde Resin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. C. Pierre and G. M. Pajonk, Chem. Rev. 102, 4243 (2002).CrossRefGoogle Scholar
  2. 2.
    A. T. Young, J. Vac. Sci. Technol., A 4 (3), 1128 (1986).CrossRefGoogle Scholar
  3. 3.
    A. T. Young, J. Cell. Plast. 23, 55 (1987).CrossRefGoogle Scholar
  4. 4.
    Yu. K. Akimov, Instrum. Exp. Tech. 46 (3), 387 (2003).Google Scholar
  5. 5.
    L. W. Hrubesh, J. Non-Cryst. Solids 225, 335 (1998).CrossRefGoogle Scholar
  6. 6.
    K. Kreek, K. Kriis, B. Maaten, M. Uibu, A. Mer, T. Kanger, and M. Koel, J. Non-Cryst. Solids 404, 43 (2014).CrossRefGoogle Scholar
  7. 7.
    V. P. Ananikov, E. A. Khokhlova, M. P. Egorov, A. M. Sakharov, S. G. Zlotin, A. V. Kucherov, L. M. Kustov, M. L. Gening, and N. E. Nifantiev, Mendeleev Commun. 25, 75 (2015).CrossRefGoogle Scholar
  8. 8.
    D. G. Schroen, C. O. Russell, J. E. Streit, D. L. Tanner, and S. C. Dropinski, in Proceedings of 15th TFSM, Oregon, USA, 2003, M-3.Google Scholar
  9. 9.
    W. Dingcai, F. Ruoven, S. Zhuoqi, and Y. Zhiquan, J. Non-Cryst. Solids 351 (10–11), 915 (2005).Google Scholar
  10. 10.
    R. W. Pekala, J. Mater. Sci. 24, 3221 (1989).CrossRefGoogle Scholar
  11. 11.
    R. W. Pekala and D. W. Schaefer, Macromolecules 26, 5487 (1993).CrossRefGoogle Scholar
  12. 12.
    K. Barral, J. Non-Cryst. Solids 225, 46 (1998).CrossRefGoogle Scholar
  13. 13.
    K. Kreek, K. Kriis, B. Maaten, M. Uibu, A. Mer, T. Kanger, and M. Koel, J. Non-Cryst. Solids 404, 43 (2014).CrossRefGoogle Scholar
  14. 14.
    S. Yun, H. Luo, and Y. Gao, J. Mater. Chem. A 2 (35), 14542 (2014).CrossRefGoogle Scholar
  15. 15.
    V. G. Pimenov, V. S. Drozhzhin, and A. M. Sakharov, Polym. Sci., Ser. B 45 (1–2), 4 (2003).Google Scholar
  16. 16.
    R. K. Ailer, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry (Wiley-Interscience, New York, Chichester, Brisbane, Toronto, 1979), Vol. 2.Google Scholar
  17. 17.
    M. I. Siling, in Advances in Science and Engineering. Chemistry and Technology of High-Molecular Compounds (VINITI, Moscow, 1977), Vol. 11, p. 119 [in Russian].Google Scholar
  18. 18.
    T. Nobuyuoki and I. Tadao, JPN Appl. No. 55-64537A (1980).Google Scholar
  19. 19.
    S. Kobayashi and H. Itoh, US Patent No. 6379862 (2002).Google Scholar
  20. 20.
    C. Thanyalak, L. Pakpume, and W. Sujitra, PMSE Prepr. 100, 322 (2009).Google Scholar
  21. 21.
    Y. Tanaka, Trans. Mater. Res. Soc. Japan 30 (3), 819 (2005).Google Scholar
  22. 22.
    S. Mahadik-Khanolkar, S. Donthula, C. Sotiriou-Leventis, and N. Leventis, Chem. Mater. 26 (3), 1303 (2014).CrossRefGoogle Scholar
  23. 23.
    M. F. Sorokin and K. A. Lyalyushko, Laboratory Manual on Chemistry and Technology of Film-Forming Compounds (Khimiya, Moscow, 1971) [in Russian].Google Scholar
  24. 24.
    E. E. Sheveleva, V. G. Pimenov, O. V. Vyshivannaya, I. V. Blagodatskikh, and A. M. Sakharov, in Proceedings of 6th All-Russian Kargin Conference Polymery-2014, Moscow, Russia, 2014, p. 653 [in Russian].Google Scholar
  25. 25.
    V. G. Pimenov, E. E. Sheveleva, and A. M. Sakharov, Russ. J. Phys. Chem. B 6 (7), 786 (2012).CrossRefGoogle Scholar
  26. 26.
    Experimental Methods in Catalytic Research: Physical Chemistry: Series of Monographs, Ed. by R. B. Anderson (Academic Press, New York, 2013), Vol. 1.Google Scholar
  27. 27.
    S. J. Greg and K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic Press, London, 1982).Google Scholar
  28. 28.
    H. Junek Von, G. Pampouehidis, and H. Rauch-Puntigam, Monatsh. Chem. 104, 1077 (1973).CrossRefGoogle Scholar
  29. 29.
    M. I. Siling and I. V. Adorova, Vysokomol. Soedin., Ser. A 13 (9), 2129 (1971).Google Scholar
  30. 30.
    J. H. Freeman and C. W. Lewis, J. Am. Chem. Soc. 76, 2080 (1954).CrossRefGoogle Scholar
  31. 31.
    A. Knop, A. P. Louis, and B. Volker, Phenolic Resins: Chemistry, Applications and Performance (Springer Science & Business Media, New York, 2013).Google Scholar
  32. 32.
    A. I. Usov, Khim. Rastit. Syr’ya 2, 7 (2001).Google Scholar
  33. 33.
    R. Banerjee, K. C. Khilar, B. Ghosh, and K. Patil, in Proceedings of AIChE Annual Meeting (Cincinnati, USA, 2005), p. 283a.Google Scholar
  34. 34.
    Handbook of Chemist (Khimiya, Moscow, Leningrad, 1964) [in Russian].Google Scholar
  35. 35.
    W. Li, G. Reichenauer, and J. Fricke, Carbon 40, 2955 (2002).CrossRefGoogle Scholar
  36. 36.
    G. W. Scherer, Adv. Colloid Interface Sci. 76–77, 321 (1998).CrossRefGoogle Scholar
  37. 37.
    J. H. Aubert, J. Cell. Plast. 24, 132 (1988).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. E. Sheveleva
    • 1
  • V. G. Pimenov
    • 1
  • I. V. Pikulin
    • 2
  • A. M. Sakharov
    • 1
  1. 1.N.D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Russian Federal Nuclear Center—All-Russia Research Institute of Experimental PhysicsSarov, Nizhny Novgorod oblastRussia

Personalised recommendations