Polymer Science Series B

, Volume 57, Issue 6, pp 659–668 | Cite as

Synthesis and characterization of pentablock copolymers based on Pluronic® L64 and poly(methyl methacrylate)

  • S. Ullah
  • A. Z. Khan
  • A. Ullah
  • S. Muhammad
  • Z. Iqbal
  • Z. Ali
  • S. M. Shah
  • M. Siddiq
  • H. Hussain
Functional Polymers


The synthesis and characterization of amphiphilic pentablock copolymers based on Pluronic® L64 (PEO13-PPO30-PEO13) and poly(methyl methacrylate) (PMMA), synthesized via atom transfer radical polymerization (ATRP) is reported. The L64 is first transformed into a bifunctional ATRP macroinitiator which was subsequently chain extended with MMA by ATRP to afford PMMA-b-L64-b-PMMA pentablock copolymers. The chemical structure of the synthesized amphiphilic block copolymers is characterized by FTIR, 1H NMR spectroscopy, and gel permeation chromatography (GPC). The GPC profiles of the block copolymers clearly show an increase in molar mass after the ATRP of MMA and monomodal molecular weight distributions for all the samples. Finally, preliminary studies on their aggregation behavior in aqueous solution have also been investigated by measuring the scattering light intensity as function of block copolymer concentration to estimate the critical aggregation concentration (CAC). The CAC decreases with increasing of hydrophobic content in copolymer, i.e., ∼25 and ∼15 mg/mL, respectively, is estimated for the pure L64 and PMMA13-b-L64-b-PMMA13. Further, with increase in temperature, the CAC is found to decrease that is attributed to the dehydration of the PEO segments at higher temperatures.


PMMA Block Copolymer Polymer Science Series Atom Transfer Radical Polymerization Atom Transfer Radical Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.-H. Lee, S. H. Kim, Y. H. Kim, and Y.-K. Han, Mac-romol. Res. 10, 85 (2002).CrossRefGoogle Scholar
  2. 2.
    L. Bromberg, Macromolecules 31, 6148 (1998).CrossRefGoogle Scholar
  3. 3.
    A. V. Kabanov, P. Lemieux, S. Vinogradov, and V. Ala-khov, Adv. Drug Deliv. Rev. 54, 223 (2002).CrossRefGoogle Scholar
  4. 4.
    A. V. Kabanov, E. V. Batrakova, and D. W. Miller, Adv. Drug Deliv. Rev. 55, 151 (2003).CrossRefGoogle Scholar
  5. 5.
    A. V. Kabanov, E. V. Batrakova, and V. Y. Alakhov, Adv. Drug Deliv. Rev. 54, 759 (2002).CrossRefGoogle Scholar
  6. 6.
    P. Alexandridis and T. A. Hatton, Colloids Surf., A 96, 1 (1995).CrossRefGoogle Scholar
  7. 7.
    M. Bohorquez, C. Koch, T. Trygstad, and N. Pandit, J. Colloid Interface Sci. 216, 34 (1999).CrossRefGoogle Scholar
  8. 8.
    J. S. Pedersen and M. C. Gerstenberg, Colloids Surf., A 213, 175 (2003).CrossRefGoogle Scholar
  9. 9.
    J. R. DesNoyer and A. J. McHugh, J. Controlled Release 86, 15 (2003).CrossRefGoogle Scholar
  10. 10.
    Y. Su, J. Wang, and H. Liu, Macromolecules 35, 6426 (2002).CrossRefGoogle Scholar
  11. 11.
    A. Caragheorgheopol and S. Schlick, Macromolecules 31, 7736 (1998).CrossRefGoogle Scholar
  12. 12.
    T. Thurn, S. Couderc-Azouani, D. M. Bloor, J. F. Hozwarth, and E. Wyn-Jones, Langmuir 19, 4363 (2003).CrossRefGoogle Scholar
  13. 13.
    R. Svingen, P. Alexandridis, and B. Akerman, Lang-muir 18, 8616 (2002).CrossRefGoogle Scholar
  14. 14.
    S. J. Huang, T. P. Wang, S. I. Lue, and L. F. Wang, Int. J. Nanomed. 8, 2011 (2013).Google Scholar
  15. 15.
    G. Gorrasi, M. Stanzione, and L. Izzo, React. Funct. Polym. 71, 23 (2011).CrossRefGoogle Scholar
  16. 16.
    A. Mei. X. Guo, Y. Ding, X. Zhang, J. Xu, Z. Fan, and B. Du, Macromolecules 43, 7312 (2010).CrossRefGoogle Scholar
  17. 17.
    L. Bromberg, Langmuir 14, 5806 (1998).CrossRefGoogle Scholar
  18. 18.
    X. Y. Xiong, K. C. Tam, and L. H. Gan, Macromole-cules 36, 9979 (2003).CrossRefGoogle Scholar
  19. 19.
    X. Y. Xiong, K. C. Tam, and L. H. Gan, Polymer 46, 1841 (2005).CrossRefGoogle Scholar
  20. 20.
    X. Y. Xiong, K. C. Tam, and L. H. Gan, J. Controlled Release 103, 73 (2005).CrossRefGoogle Scholar
  21. 21.
    X. Y. Xiong, K. C. Tam, and L. H. Gan, Macromole-cules 37, 3425 (2004).CrossRefGoogle Scholar
  22. 22.
    B. C. Anderson, S. M. Cox, P. D. Bloom, V. V. Sheares, and S. K. Mallapragada, Macromolecules 36, 1670 (2003).CrossRefGoogle Scholar
  23. 23.
    A. Agarwal, R. Unfer, and S. K. Mallapragada, J. Con-trolled Release 103, 245 (2005).CrossRefGoogle Scholar
  24. 24.
    J. C. Ha, S. Y. Kim, and Y. M. Lee, J. Controlled Release 62, 381 (1999).CrossRefGoogle Scholar
  25. 25.
    S. Y. Kim, J. C. Ha, and Y. M. Lee, J. Controlled Release 65, 345(2000).CrossRefGoogle Scholar
  26. 26.
    X. Y. Xiong, K. C. Tam, and L. H. Gan, J. Appl. Polym. Sci. 100, 4163 (2006).CrossRefGoogle Scholar
  27. 27.
    Y. Zhang and Y. M. Lam, J. Colloid Interface Sci. 285, 80 (2005).CrossRefGoogle Scholar
  28. 28.
    J. He, P. Ni, and C. Liu, J. Polym. Sci., Part A: Polym. Chem. 46, 3029 (2008).CrossRefGoogle Scholar
  29. 29.
    T. E. Patten and K. Matyjaszewski, Adv. Mater. 10, 901 (1998).CrossRefGoogle Scholar
  30. 30.
    K. Matyjaszewski, Curr. Opin. Solid State Mater. Sci. 1, 769 (1996).CrossRefGoogle Scholar
  31. 31.
    S. S. Sheiko, B. S. Sumerlin, and K. Matyjaszewski, Prog. Polym. Sci. 33, 759 (2008).CrossRefGoogle Scholar
  32. 32.
    H. Datta, A. K. Bhowmick, and N. K. Singha, Polymer 50, 3259 (2009).CrossRefGoogle Scholar
  33. 33.
    H. Datta, A. K. Bhowmick, and N. K. Singha, J. Polym. Sci., Part A: Polym. Chem. 45, 1661 (2007).CrossRefGoogle Scholar
  34. 34.
    F. di Lena and K. Matyjaszewski, Prog. Polym Sci. 35, 959 (2010).CrossRefGoogle Scholar
  35. 35.
    B. B. Ke, L. S. Wan, and Z. K. Xu, Langmuir 26, 8946 (2010).CrossRefGoogle Scholar
  36. 36.
    H. Datta and N. K. Singha, J. Polym. Sci., Part A: Polym. Chem. 46, 3499 (2008).CrossRefGoogle Scholar
  37. 37.
    S. K. Jewrajka and B. M. Mandal, Macromolecules 36, 311 (2003).CrossRefGoogle Scholar
  38. 38.
    M. D. Determan, J. P. Cox, S. Seifert, P. Thiyagarajan, and S. K. Mallapragada, Polymer 46, 6933 (2005).CrossRefGoogle Scholar
  39. 39.
    W. Wang, Y. Li, M. Sun, C. Zhou, Y. Zhang, Y. Li, and Q. Yang, Chem. Commun. 48, 6040 (2012).CrossRefGoogle Scholar
  40. 40.
    D. Han, L. Zhu, C. Yichi, W. Li, and L. Feng, J. Fluo-rine Chem. 156, 38 (2013).CrossRefGoogle Scholar
  41. 41.
    N. A. Dzulkurnain, S. A. Hanifah, A. Ahmad, and N. S. Mohamed, Int. J. Electrochem. Sci. 10, 84 (2015).Google Scholar
  42. 42.
    H. Hussain, B. H. Tan, G. L. Seah, Y. Liu, C. B. He, and T. P. Davis, Langmuir 26, 11763 (2010).CrossRefGoogle Scholar
  43. 43.
    H. Hussain, K. Busse, and J. Kressler, Macromol. Chem. Phys. 204, 936 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. Ullah
    • 1
  • A. Z. Khan
    • 1
  • A. Ullah
    • 1
  • S. Muhammad
    • 1
  • Z. Iqbal
    • 1
  • Z. Ali
    • 2
  • S. M. Shah
    • 1
  • M. Siddiq
    • 1
  • H. Hussain
    • 1
  1. 1.Department of ChemistryQuaid-i-Azam University IslamabadIslamabadPakistan
  2. 2.Department of Chemical EngineeringCOMSATS Institute of Information TechnologyLahorePakistan

Personalised recommendations