Polymer Science Series B

, Volume 57, Issue 6, pp 654–658 | Cite as

Synthesis and characterization of hydroxyl-terminated triblock copolymer of poly(glycidyl nitrate-block-butadiene-block-glycidyl nitrate) as potential energetic binder

  • Mostafa Ghorbani
  • Yadollah Bayat
Functional Polymers


Hydroxyl-terminated triblock copolymer poly(glycidyl nitrate-block-butadiene-block-glycidylnitrate) an energetic binder was synthesized by ring opening polymerization of glycidylnitrate in the presence of hydroxyl-terminated poly(butadiene)catalyzed by BF3 · OEt2. The different conditions of synthesis were used to improve the molecular weight and mechanical properties of binder. The resulted triblock copolymer was characterized by FTIR, 1H NMR, GPC and DSC. According to DSC, the glass transition temperature of synthesized block polymer is –27°C, which is suitable for use as an energetic propellant binder.


Polymer Science Series Butadiene Triblock Copolymer Solid Propellant NMMO 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. R. Mahdavinia, A. Pourjavadi, H. Hosseinzadeh, and M. J. Zohuriaan, Eur. Polym. J. 40, 1399 (2004).CrossRefGoogle Scholar
  2. 2.
    Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Prog. Polym. Sci. 35, 357 (2010).CrossRefGoogle Scholar
  3. 3.
    D. Schmaljohann, Adv. Drug Delivery Rev. 58, 1655 (2006).CrossRefGoogle Scholar
  4. 4.
    E. R. Gillies and J. M. J. Fréchet, Drug Discovery Today 10, 35 (2005).CrossRefGoogle Scholar
  5. 5.
    X. M. Li, D. Reinhoudt, and M. Crego-Calama, Chem. Soc. Rev. 36, 1350 (2007).CrossRefGoogle Scholar
  6. 6.
    A. K. Sikder and N. Sikder, J. Hazard. Mater. 112, 1 (2004).CrossRefGoogle Scholar
  7. 7.
    F. A. Williams, M. Barrere, and N. C. Huang, Funda-mental Aspects of Solid Propellant Rockets, No. 116 (Technivision Services, Slough, 1969).Google Scholar
  8. 8.
    R. T. Holzmann, Chemical Rockets, Flame and Explo-sives Technology (Marcel Dekker, New York, NY, 1969).Google Scholar
  9. 9.
    K. Kishore and K. Sridhara, Solid Propellant Chemistry: Condensed Phase Behaviour of Ammonium Perchlorate-Based Solid Propellants (Defence Scientific Informa-tion and Documentation Centre, Ministry of Defence, New Delhi, 1999).Google Scholar
  10. 10.
    A. Provatas, Energetic Polymers and Plastics for Explo-sive Formulations—A Review of Recent Advances, DSTO-TR-0966 (Commonwealth of Australia, Can-berra, 2000).Google Scholar
  11. 11.
    W. C. Gardiner, Combustion Chemistry (Springer, New York, NY, 1984).CrossRefGoogle Scholar
  12. 12.
    S. K. Adapaka, B. Vepakomma. R. Rabindra, K. Sinha, and A. S. Rao, Propellants, Explos., Pyrotech. 35, 359 (2010).CrossRefGoogle Scholar
  13. 13.
    J. P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics (Wiley-VCH, 2010).CrossRefGoogle Scholar
  14. 14.
    K. Weinheim, M. B. Talawar, R. Sivabalan, M. Anniyappan, G. M. Gore, S. N. Asthana, and B. R. Gandhe, Combust., Explos. Shock Waves 43, 62 (2007).CrossRefGoogle Scholar
  15. 15.
    Y. M. Murali and K. Mohana Raju, Int. J. Polym. Anal. Charact. 9, 5 (2004).Google Scholar
  16. 16.
    Y. M. Murali, M. PadmanabhaRajua, and K. Mohana Raju, Int. J. Polym. Mater. Polym. Biomater. 54, 7 (2005).Google Scholar
  17. 17.
    M. B. Frankel, L. R. Grant, and J. E. Flanagan, J. Pro-pul. Power 8, 560 (1992).CrossRefGoogle Scholar
  18. 18.
    H. Arisawa and T. B. Brill, Combust. Flame 112, 533 (1998).CrossRefGoogle Scholar
  19. 19.
    M. K. Aparecida, J. A. Saboia Holanda, U. Barbieri, G. Polacco, T. Keicher, H. Krause, and M. Kaiser, Pro-pellants, Explos., Pyrotech. 33, 365 (2008).CrossRefGoogle Scholar
  20. 20.
    J. J. Jutier, A. Mone, D. Gunzbourg, and R. E. Prud-homme, J. Appl. Polym. Sci., Part A: Polym. Chem. 37, 1027 (1999).CrossRefGoogle Scholar
  21. 21.
    H. Cheradame, J. P. Andreolety, and E. Rousset, Mak-romol. Chem. 192, 901 (1991).CrossRefGoogle Scholar
  22. 22.
    I. S. José, D. Oliveira, M. F. Diniz, A. M. Kawamoto, R. C. L. Dutra, and T. Keicher, Propellants, Explos., Pyrotech. 31, 395 (2006).CrossRefGoogle Scholar
  23. 23.
    E. Diaz, P. Brousseau, G. Ampleman, and R. E. Prud-homme, Propellants, Explos., Pyrotech. 28, 101 (2003).CrossRefGoogle Scholar
  24. 24.
    H. J. Desai, A. V. Cunliffe, T. Lewis, R. W. Millar, N. C. Paul, M. J. Stewart, and A. J. Amass, Polymer 37, 3471 (1996).CrossRefGoogle Scholar
  25. 25.
    S. D. McGrane, D. S. Moore, and D. J. Funk, J. Phys. Chem. A 108, 9342 (2004).CrossRefGoogle Scholar
  26. 26.
    J. Drobny, Polym. Adv. Technol. 18, 117 (2007).CrossRefGoogle Scholar
  27. 27.
    B. Jin, H. Dong, R. Peng, J. Shen, B. Tan, and S. Chu, J. Appl. Polym. Sci. 122, 1643 (2011).CrossRefGoogle Scholar
  28. 28.
    Y. M. Murali, Y. Mani, and K. M. Raju, Des. Mono-mers Polym. 9, 201 (2006).CrossRefGoogle Scholar
  29. 29.
    R. M. Shankar, T. K. Roy, and T. Jana, J. Appl. Polym. Sci. 114, 732 (2009).CrossRefGoogle Scholar
  30. 30.
    T. K. Highsmith, A. J. Sanderson, L. F. Cannizzo, and R. M. Hajik, US Patent No. 6362311 B1 (2000).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringMalek Ashtar University of TechnologyTehranIran

Personalised recommendations