Polymer Science Series B

, Volume 57, Issue 5, pp 488–496 | Cite as

Rheokinetics of the in situ formation of a poly(methyl methacrylate)–polyurethane blend in the presence of an oligomeric initiator of polymerization: Morphology and mechanical properties of the final reaction products

  • V. F. Shumskii
  • L. F. Kosyanchuk
  • T. D. Ignatova
  • I. P. Getmanchuk
  • V. K. Grishchenko
  • N. A. Bus’ko
  • O. I. Antonenko
  • O. V. Babich
Polymer Blends


The relationship between the rheokinetics of the in situ formation of a linear poly(methyl methacrylate)–crosslinked polyurethane blend in the presence of various amounts of an oligomeric azo initiator containing polyurethane chain fragments and groups able to initiate the radical polymerization of methyl methacrylate and the process of phase separation, the morphology, and the mechanical properties of the final products is studied. It is shown that the times of phase separation and gelation are interrelated and depend on the concentration of the azo initiator in a simple manner. This initiator affects the structural and rheological transitions in the system and leads to the formation of morphologies with smaller domains. The most stable system with the best dispersion of polyurethane in poly(methyl methacrylate) is the blend containing 0.002 mol/L azo initiator that possesses the optimum mechanical properties.


Phase Separation PMMA Polymer Science Series HMDI Binary Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. N. Emel’yanov, Extended Abstract of Doctoral Dissertation in Chemistry (MGU, Moscow, 1990).Google Scholar
  2. 2.
    N. A. Plate, A. D. Litmanovich, and Ya. V. Kudryavtsev, Macromolecular Reactions in Melts and Blends of Polymers. Theory and Experiment (Nauka, Moscow, 2008) [in Russian].Google Scholar
  3. 3.
    L. F. Kosyanchuk, T. D. Ignatova, V. K. Grishchenko, N. A. Bus’ko, O. I. Antonenko, O. V. Babich, Yu. A. Sil’chenko, Yu. V. Maslak, V. F. Shumskii, Polym. Sci., Ser. A 56 (2), 173 (2014).CrossRefGoogle Scholar
  4. 4.
    V. F. Shumskii, L. F. Kosyanchuk, I. P. Getmanchuk, O. V. Babich, O. I. Antonenko, Polym. Sci., Ser. A 53 (10), 955 (2011).CrossRefGoogle Scholar
  5. 5.
    A. Ya. Malkin, A. V. Semakov, and V. G. Kulichikhin, Polym. Sci., Ser. A 52 (11), 1083 (2010).CrossRefGoogle Scholar
  6. 6.
    Yu. S. Lipatov, T. T. Alekseeva, and V. F. Rosovitskii, Dokl. Akad. Nauk SSSR 307 (4), 883 (1989).Google Scholar
  7. 7.
    M. B. Lachinov, B. A. Korolev, V. E. Dreval’, E. I. Cherep, V. P. Zubov, G. V. Vinogradov, V. A. Kabanov, Vysokomol. Soedin., Ser. A 24 (10), 2220 (1982).Google Scholar
  8. 8.
    E. B. Richter and C. W. Macosko, Polym. Eng. Sci. 20 (14), 921 (1980).CrossRefGoogle Scholar
  9. 9.
    H. H. Winter, Polym. Eng. Sci. 27 (22), 1698 (1987).CrossRefGoogle Scholar
  10. 10.
    I. Yu. Gorbunova, M. L. Kerber, I. N. Balashov, S. I. Kazakov, A. Ya. Malkin, Polym. Sci., Ser. A 43 (8), 826 (2001).Google Scholar
  11. 11.
    Yu. S. Lipatov, L. F. Kosyanchuk, and A. E. Nesterov, Polym. Int. 51 (9), 772 (2002).CrossRefGoogle Scholar
  12. 12.
    A. Ya. Malkin and S. G. Kulichikhin, Rheology in the Processes of Polymer Formation and Conversion (Khimiya, Moscow, 1985) [in Russian].Google Scholar
  13. 13.
    V. D. Klykova, A. E. Chalykh, L. V. Vershinin, V. N. Kuleznev, N. N. Avdeev, V. V. Matveev, Yu. G. Yanovskii, Vysokomol. Soedin., Ser. A 27 (4), 724 (1985).Google Scholar
  14. 14.
    V. F. Shumskii, L. F. Kosyanchuk, T. T. Todosiichuk, I. P. Getmanchuk, O. V. Babich, Yu. P. Gomza, Dokl. Acad. Nauk Ukr., No. 2, 137 (2011).Google Scholar
  15. 15.
    H. Kim and K. Char, Korea-Australia Rheol. J. 12 (1), 77 (2000).Google Scholar
  16. 16.
    V. F. Shumskii, L. F. Kosyanchuk, T. D. Ignatova, Yu. P. Gomza, I. P. Getmanchuk, O. I. Antonenko, O. V. Babich, S. D. Nesin, Yu. V. Maslak, Polim. Zh. 36 (1), 57 (2014).Google Scholar
  17. 17.
    A. Ya. Malkin and S. G. Kulichikhin, Vysokomol. Soedin., Ser. B 38 (2), 362 (1996).Google Scholar
  18. 18.
    D. Graebling, R. Muller, and J. F. Palierne, Macromolecules 26 (2), 320 (1993).CrossRefGoogle Scholar
  19. 19.
    V. N. Kuleznev, Polymer Blends (Khimiya, Moscow, 1980) [in Russian].Google Scholar
  20. 20.
    A. Ya. Malkin and A. I. Isaev, Rheology: Concepts, Methods, Applications (Professiya, St. Petersburg, 2010) [in Russian].Google Scholar
  21. 21.
    B. A. Rozenberg, Ross. Khim. Zh. 45 (5–6), 23 (2001).Google Scholar
  22. 22.
    P. Jyotishkumar, C. Özdilek, P. Moldenaers, C. Sinturel, A. Janke, J. Pionteck, S. Thomas, J. Phys. Chem. B 114 (42), 13271.Google Scholar
  23. 23.
    A. E. Nesterov, Yu. S. Lipatov, and V. V. Horichko, Polym. Int. 48 (2), 117 (1999).CrossRefGoogle Scholar
  24. 24.
    M. Okada and T. Sakaguchi, Macromolecules 34 (12), 4027 (2001).CrossRefGoogle Scholar
  25. 25.
    I. V. Mekalina, E. G. Sentyurin, T. S. Trigub, and M. K. Aizatulina, Plast. Massy, No. 3, 63 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. F. Shumskii
    • 1
  • L. F. Kosyanchuk
    • 1
  • T. D. Ignatova
    • 1
  • I. P. Getmanchuk
    • 1
  • V. K. Grishchenko
    • 1
  • N. A. Bus’ko
    • 1
  • O. I. Antonenko
    • 1
  • O. V. Babich
    • 1
  1. 1.Institute of Macromolecular ChemistryNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations