Polymer Science Series B

, Volume 57, Issue 4, pp 360–369 | Cite as

Micelles of amphiphilic copolymers as a medium for peroxyoxalate chemiluminescent reaction in water environment

Functional Polymers


The peroxyoxalate chemiluminescent reaction of bis(4-nitrophenyl) oxalate or bis(pentachlorophenyl) oxalate with hydrogen peroxide in the presence of hematoporhyrin IX water-insoluble derivative in micelles or associates of Pluronics F68, L64, L61 and the alternating copolymer dimethyl siloxane-ethylene oxide is investigated. Pluronic L61, which forms large clusters in solution, has the greatest impact on the reaction quantum yield. The micelles influence on the efficiency of the reaction with bis(pentachlorophenyl) oxalate is stronger in comparison to that with bis(4-nitrophenyl) oxalate. The chemiluminescence quantum yield increases with the concentrations of fluorophore and hydrogen peroxide. If the polymer content is being varied, quantum yield passes through the maximum, which corresponds to the largest amount of particles containing both oxalate and porphyrin.


Oxalate Polymer Science Series Pluronic Lower Critical Solution Temperature Hydrodynamic Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Wasyliw, E. Stone, and J. G. Pucknat, US Patent No. 5284894 (1994).Google Scholar
  2. 2.
    Y. C. Chen, V. Dimonie, and M. S. El-Aasser, J. Appl. Polym. Sci. 45, 487 (1992).CrossRefGoogle Scholar
  3. 3.
    E. V. Gulbekian, J. Polym. Sci., Part A-1: Polym. Chem. 6, 2265 (1968).CrossRefGoogle Scholar
  4. 4.
    P. Khullar, A. Mahal, V. Singh, T. S. Banipal, G. Kaur, and M. S. Bakshi, Langmui 26 (13), 11363 (2010).CrossRefGoogle Scholar
  5. 5.
    E. D. Maksimova, E. B. Faizuloev, V. A. Izumrudov, E. A. Litmanovich, and N. S. Melik-Nubarov, Polym. Sci., Ser. 54 (1), 69 (2012).CrossRefGoogle Scholar
  6. 6.
    N. O. Kozlova, I. B. Bruskovskaya, N. S. MelikNubarov, A. A. Yaroslavov, and V. A. Kabanov, FEBS Lett. 461, 141 (1999).CrossRefGoogle Scholar
  7. 7.
    M. M. Rauhut, B. G. Roberts, and A. M. Semsel, J. Am. Chem. Soc. 88 (15), 3604 (1966).CrossRefGoogle Scholar
  8. 8.
    M. M. Rauhut, Acc. Chem. Res. 2, 80 (1969).CrossRefGoogle Scholar
  9. 9.
    G. B. Schuster, Acc. Chem. Res. 12, 366 (1979).CrossRefGoogle Scholar
  10. 10.
    G. B. Schuster and S. P. Schmidt, Adv. Phys. Org. Chem. 18, 187 (1982).Google Scholar
  11. 11.
    J. Lee and H. H. Seliger, Photochem. Photobiol. 4, 1015 (1965).CrossRefGoogle Scholar
  12. 12.
    M. M. Rauhut, L. J. Bollyky, B. G. Roberts, M. Loy, R. H. Whitman, A. V. Iannotta, A. M. Semsel, and K. A. Clarke, J. Am. Chem. Soc. 89 (25), 6515 (1967).CrossRefGoogle Scholar
  13. 13.
    S.-S. Tseng, A. G. Mohan, L. G. Haines, L. S. Vizcarra, M. M. Rauhut, J. Org. Chem. 44 (23), 4114 (1979).CrossRefGoogle Scholar
  14. 14.
    F. McCapra, in Bioluminescence and Chemiluminescence, Part C, Ed. by M. M. Ziegler (Acad. Press, New York, 2000), Vol. 305, p. 3.CrossRefGoogle Scholar
  15. 15.
    M. Korbelik, Photochem. Photobiol. Sci. 10, 664 (2011).CrossRefGoogle Scholar
  16. 16.
    M. López-Lázaro, Mol. Med. 16 (3–4), 144 (2010).Google Scholar
  17. 17.
    D. Lee, S. Khaja, J. C. Velasquez-Castano, M. Dasari, C. Sun, J. Petros, W. R. Taylor, and N. Murthy, Nat. Mater. 6, 765 (2007).CrossRefGoogle Scholar
  18. 18.
    M. Dasari, D. Lee, V. R. Erigala, and N. Murthy, J. Biomed. Mater. Res., Part A 89 (3), 561 (2009).CrossRefGoogle Scholar
  19. 19.
    D. Lee, V. R. Erigala, M. Dasari, J. Yu, R. M. Dickson, and N. Murthy, Int. J. Nanomed 3 (4), 471 (2008).CrossRefGoogle Scholar
  20. 20.
    Y. Lee, C. Lim, A. Singh, J. Koh, J. Kim, I. C. Kwon, and S. Kim, ACS Nano 6 (8), 6759.Google Scholar
  21. 21.
    M. J. Phillip and P. P. Maximuke, Oncolog 46 (4), 266 (1989).CrossRefGoogle Scholar
  22. 22.
    R. Chen, L. Zhang, J. Gao, W. Wu, Y. Hu, and X. Jiang, J. Biomed. Biotechnol. 2011, 1 (2011).Google Scholar
  23. 23.
    R. Laptev, M. Nisnevitch, G. Siboni, Z. Malik, and M. A. Firer, Br. J. Cancer 95, 189 (2006).CrossRefGoogle Scholar
  24. 24.
    S. Carpenter, M. J. Fehr, G. A. Kraus, and J. W. Petrich, Proc. Natl. Acad. Sci. U. S. A. 91, 12273 (1994).CrossRefGoogle Scholar
  25. 25.
    S. Saito, Colloids Surf. 19, 351 (1986).CrossRefGoogle Scholar
  26. 26.
    I. R. Schmolka, J. Am. Oil Chem. Soc. 54, 110 (1977).CrossRefGoogle Scholar
  27. 27.
    K. Mortensen and J. S. Pedersen, Macromolecules 26, 805 (1993).CrossRefGoogle Scholar
  28. 28.
    P. Alexandridis, T. Nivaggioli, and T. A. Hatton, Langmuir 11, 1468 (1995).CrossRefGoogle Scholar
  29. 29.
    R. Nagarajan, Colloids Surf., B 16, 55 (1999).CrossRefGoogle Scholar
  30. 30.
    J. R. Lopes and W. Loh, Langmuir 14, 750 (1998).CrossRefGoogle Scholar
  31. 31.
    S. M. Moghimi and A. C. Hunter, Trends Biotechnol 18 (10), 412 (2000).CrossRefGoogle Scholar
  32. 32.
    P. H. Elworthy and J. F. Ireon, in Nonionic Surfactants, Ed. by M. J. Shick (Marcel Dekker, New York, 1971), p. 9317.Google Scholar
  33. 33.
    GOST (State Standard) 14870–77, 2008. (ASTM E20308; E1064-12).Google Scholar
  34. 34.
    H. Neuvonen, J. Chem. Soc., Perkin Trans. 1 2, 945 (1995).Google Scholar
  35. 35.
    J. Lee and H. H. Seliger, Photochem. Photobiol. 15, 227 (1972).CrossRefGoogle Scholar
  36. 36.
    H. H. Seliger, Liquid Scintillation Counting Recent Applications and Development (Acad. Press, New York, 1980).Google Scholar
  37. 37.
    C. V. Stevani, S. M. Silva, and W. J. Baader, Eur. J. Org. Chem. 24, 4037 (2000).CrossRefGoogle Scholar
  38. 38.
    V. S. Bugrin, M. Yu. Kozlov, I. I. Baskin, and N. S. Melik-Nubarov, Polym. Sci., Ser. 49 (4), 463 (2007).CrossRefGoogle Scholar
  39. 39.
    M. Y. Kozlov, N. S. Melik-Nubarov, E. V. Batrakova, and A. V. Kabanov, Macromolecules 33, 3305 (2000).CrossRefGoogle Scholar
  40. 40.
    M. H. Abraham, A. Ibrahim, A. M. Zissimos, Y. H. Zhao, J. Comer, and D. P. Reynolds, Drug Discovery Toda 7 (20), 1056 (2002).CrossRefGoogle Scholar
  41. 41.
    J. Drahonovsky and Z. Vacek, Collect. Czech. Chem. Commun 36 (10), 3431 (1971).CrossRefGoogle Scholar
  42. 42.
    L. F. M. L. Ciscato, F. H. Bartoloni, E. L. Bastos, and W. J. Baader, J. Org. Chem. 74, 8974 (2009).CrossRefGoogle Scholar
  43. 43.
    O. Budkina, T. V. Demina, T. Y. Dorodnykh, N. S. Melik-Nubarov, and I. D. Grozdova, Polym. Sci., Ser. 54 (9), 707 (2012).CrossRefGoogle Scholar
  44. 44.
    E. V. Nam, A. E. Zhirnov, E. A. Litmanovich, N. S. Melik-Nubarov, and I. D. Grozdova, Polym. Sci., Ser. 52 (9), 907 (2010).CrossRefGoogle Scholar
  45. 45.
    L. Yang, P. Alexandridis, D. C. Steytler, M. J. Kositza, and J. F. Holzwarth, Langmui 16 (23), 8555 (2000).CrossRefGoogle Scholar
  46. 46.
    Z. Zhou and B. Chu, Macromolecule 21 (8), 2548 (1988).CrossRefGoogle Scholar
  47. 47.
    Z. Zhou and B. Chu, J. Colloid Interface Sci. 126 (1), 171 (1988).CrossRefGoogle Scholar
  48. 48.
    D. N. Pavlov, T. Yu. Dorodnykh, O. V. Zaborova, and N. S. Melik-Nubarov, Polym. Sci., Ser. 51 (3), 295 (2009).CrossRefGoogle Scholar
  49. 49.
    P. Alexandridis and T. A. Hatton, Colloids Surf., A 96, 1 (1995).CrossRefGoogle Scholar
  50. 50.
    P. N. Hurter, J. M. H. M. Scheutjens, and T. A. Hatton, Macromolecules 26, 5592 (1993).CrossRefGoogle Scholar
  51. 51.
    P. N. Hurter, J. M. H. M. Scheutjens, and T. A. Hatton, Macromolecules 26, 5030 (1993).CrossRefGoogle Scholar
  52. 52.
    B. Kanner, W. G. Reid, and I. H. Petersen, Ind. Eng. Chem. Prod. Res. Dev. 6, 88 (1967).CrossRefGoogle Scholar
  53. 53.
    M. Srividhya, K. Chandrasekar, G. Baskar, and B. S. R. Reddy, Polymer 48, 1261 (2007).CrossRefGoogle Scholar
  54. 54.
    G. Kickelbick, J. Bauer, N. Husing, M. Andersson, and K. Holmberg, Colloids Surf., A 254, 37 (2005).CrossRefGoogle Scholar
  55. 55.
    O. M. Steijger, H. M. van Mastbergen, and J. J. M. Holthuis, Anal. Chim. Acta 217, 229 (1989).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations