Polymer Science Series B

, Volume 57, Issue 3, pp 224–227 | Cite as

The kinetics of carbon dioxide and propylene oxide copolymerization catalyzed by binary catalyst system

  • O. M. Chukanova
  • E. V. Bukhovets
  • E. O. Perepelitsina
  • G. P. Belov


The kinetics of carbon dioxide and propylene oxide copolymerization was investigated in order to obtain Arrhenius parameters for the reaction in the presence of the efficient binary catalytic system (salen)Co(DNP)/[PPN]Cl. The reaction rate was followed by measuring the uptake of carbon dioxide during copolymerization. The steady-state rate of the reaction reaches a maximum value at carbon dioxide pressure of 0.6–0.7 MPa. At the reaction conditions, the dependences of the reaction rate on the concentrations of reagents follow the first-order kinetic low. The value of effective activation energy is equal to 45.7 ± 2.0 kJ/mol, and pre-exponential factor in the Arrhenius equation is equal to (5.1 ± 0.1) × 105 L2/(mol2 s). The poly(propylene carbonate) produced was shown to be a regio-regular copolymer with a bimodal molecular weight distribution.


Copolymerization Polymer Science Series Salen Propylene Carbonate Effective Activation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Darensbourg, Chem. Rev. 107(6), 2388 (2007).CrossRefGoogle Scholar
  2. 2.
    S. Klaus, M. W. Lehenmeier, C. E. Anderson, and B. Rieger, Coord. Chem. Rev. 255, 1460 (2011).CrossRefGoogle Scholar
  3. 3.
    M. R. Kember, A. Buchard, and C. K. Williams, Chem. Commun. 47, 141 (2011).CrossRefGoogle Scholar
  4. 4.
    X.-B. Lu and D. J. Darensbourg, Chem. Soc. Rev. 41, 1462 (2012).CrossRefGoogle Scholar
  5. 5.
    X.-B. Lu, W.-M. Ren, and G.-P. Wu, Acc. Chem. Res. 45(10), 1721 (2012).CrossRefGoogle Scholar
  6. 6.
    C. Maeda, Y. Miyazaki, and T. Ema, Catal. Sci. Technol., No. 4, 1482 (2014).Google Scholar
  7. 7.
    X.-B. Lu, L. Shi, Y.-M. Wang, R. Zhang, Y.-J. Zhang, X.-J. Peng, Z.-C. Zhang, B. Li, J. Am. Chem. Soc. 128(5), 1664 (2006).CrossRefGoogle Scholar
  8. 8.
    O. M. Chukanova, E. O. Perepelitsina, and G. P. Belov, Polym. Sci., Ser. B 56(5), 547 (2014).CrossRefGoogle Scholar
  9. 9.
    F. Jutz, A. Buchard, M. R. Kember, S. B. Fredriksen, C. K. Williams, J. Am. Chem. Soc. 133, 17395 (2011).CrossRefGoogle Scholar
  10. 10.
    R. L. Paddock and S. T. Nguyen, Macromolecules 38, 6251 (2005).CrossRefGoogle Scholar
  11. 11.
    X.-B. Lu and Y. Wang, Angew. Chem., Int. Ed. 43, 3574 (2004).CrossRefGoogle Scholar
  12. 12.
    P. P. Pescarmona and M. Taherimehr, Catal. Sci. Technol. 2, 2169 (2012).CrossRefGoogle Scholar
  13. 13.
    G.-P. Wu, S.-H. Wei, X.-B. Lu, W.-M. Ren, D. J. Darensbourg, Macromolecules 43(21), 9202 (2010).CrossRefGoogle Scholar
  14. 14.
    C. T. Cohen, T. Chu, and G. Coates, J. Am. Chem. Soc. 127(31), 10869 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • O. M. Chukanova
    • 1
  • E. V. Bukhovets
    • 2
  • E. O. Perepelitsina
    • 1
  • G. P. Belov
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Ivanovo State UniversityIvanovoRussia

Personalised recommendations