Skip to main content
Log in

Carbon quantum dots hydrothermally synthesized from chitin

  • Synthesis
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

A simple hydrothermal treatment of chitin in dilute nitric acid (0.5–2.0 wt %) at 180°C for up to 3 h, which provides the dissolution of up to 50% of the polysaccharide and the formation of nanosized carbon quantum dots (C-dots), is proposed. Aqueous solutions of C-dot dispersions have high dispersion stability. Under illumination with a luminescent lamp, the solutions exhibit bright luminescence, the characteristic feature of which is a change in color with variation in the excitation wavelength. According to high-resolution transmission electron microscopy, the C-dots have a crystalline structure. It is specified that the proposed mechanisms of the hydrothermal carbonization of carbohydrates assume the formation of only an amorphous coal-like product. The example of the hydrothermal treatment of a sucrose solution shows that, along with the formation of a solid precipitate of spherical carbon microparticles that is described in the literature, the formation of a luminescent crystalline product occurs. This fact suggests that the carbonization mechanism is more complicated than what has been assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. N. Baker and G. A. Baker, Angew. Chem., Int. Ed. 49(38), 6726 (2010).

    Article  CAS  Google Scholar 

  2. H. T. Li, Z. H. Kang, Y. Liu, and S. T. Lee, J. Mater. Chem. 22(46), 24230 (2012).

    Article  CAS  Google Scholar 

  3. J. Shen, Y. Zhu, X. Yang, and C. Li, Chem. Commun. 48(31), 3686 (2012).

    Article  CAS  Google Scholar 

  4. J. C. G. E. da Silva and H. M. R. Goncalves, TrAC, Trends Anal. Chem. 30(8), 1327 (2011).

    Article  Google Scholar 

  5. V. Kumar, G. Toffoli, and F. Rizzolio, ACS Med. Chem. Lett. 4(11), 1012 (2013).

    Article  CAS  Google Scholar 

  6. X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, and W. A. Scrivens, J. Am. Chem. Soc. 126(40), 12736 (2004).

    Article  CAS  Google Scholar 

  7. X. D. He, H. T. Li, Y. Liu, H. Huang, Z. H. Kang, and S. T. Lee, Colloids Surf., B 87(2), 326.

  8. Y. H. Yang, J. H. Cui, M. T. Zheng, C. F. Hu, S. Z. Tan, Y. Xiao, Q. Yang, and Y. L. Liu, Chem. Commun. 48(3), 380 (2012).

    Article  CAS  Google Scholar 

  9. S. Liu, J. Q. Tian, L. Wang, Y. W. Zhang, X. Y. Qin, Y. L. Luo, A. M. Asiri, A. O. Al-Youbi, and X. P. Sun, Adv. Mater. 24(15), 2037 (2012).

    Article  CAS  Google Scholar 

  10. A. Prasannan and T. Imae, Ind. Eng. Chem. Res. 52(44), 15673 (2013).

    Article  CAS  Google Scholar 

  11. G. A. F. Roberts, Chitin Chemistry (MacMillan Educ., Basingstoke, Hampshire, 1992).

    Google Scholar 

  12. Y. Shchipunov, Pure Appl. Chem. 84(12), 2579 (2012).

    Article  CAS  Google Scholar 

  13. S. Hirano, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, 2000).

    Google Scholar 

  14. E. Khor, Curr. Opin. Solid State Mat. Sci. 6(4), 313 (2002).

    Article  CAS  Google Scholar 

  15. M. Sevilla and A. B. Fuertes, Chem. A. Eur. J. 15(16), 4195 (2009).

    Article  CAS  Google Scholar 

  16. C. K. S. Pillai, W. Paul, and C. P. Sharma, Prog. Polym. Sci. 34(7), 641 (2009).

    Article  CAS  Google Scholar 

  17. G. Li, Y. Du, Y. Tao, Y. Liu, S. Li, X. Hu, and J. Yang, Carbohydr. Polym. 80(3), 970 (2010).

    Article  CAS  Google Scholar 

  18. B. S. Chen, F. M. Li, S. X. Li, W. Weng, H. X. Guo, T. Guo, X. Y. Zhang, Y. B. Chen, T. T. Huang, X. L. Hong, S. Y. You, Y. M. Lin, K. H. Zeng, and S. Chen, Nanoscale 5(5), 1967 (2013).

    Article  CAS  Google Scholar 

  19. W. Lu, X. Qin, S. Liu, G. Chang, Y. Zhang, Y. Luo, A. M. Asiri, A. O. Al-Youbi, and X. Sun, Anal. Chem. 84(12), 5351 (2012).

    Article  CAS  Google Scholar 

  20. S. Pandey, A. Mewada, M. Thakur, S. Pillai, R. Dharmatti, C. Phadke, and M. Sharon, RSC Adv. 4(3), 1174 (2014).

    Article  CAS  Google Scholar 

  21. S. G. Kwon and T. Hyeon, Small 7(19), 2685 (2011).

    Article  CAS  Google Scholar 

  22. K. M. Sergeeva, I. V. Postnova, and Y. A. Shchipunov, Colloid J. 75(6), 779 (2013).

    Article  Google Scholar 

  23. C. Ding, A. Zhu, and Y. Tian, Acc. Chem. Res. 47(1), 20 (2013).

    Article  Google Scholar 

  24. S. K. Cushing, M. Li, F. Huang, and N. Wu, ACS Nano 8(1), 1002 (2014).

    Article  CAS  Google Scholar 

  25. Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca, and S. Y. Xie, J. Am. Chem. Soc. 128(24), 7756 (2006).

    Article  CAS  Google Scholar 

  26. H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, and S. T. Lee, Angew. Chem., Int. Ed. 49(26), 4430 (2010).

    Article  CAS  Google Scholar 

  27. H. Ming, Z. Ma, Y. Liu, K. Pan, H. Yu, F. Wang, and Z. Kang, Dalton Trans. 41(31), 9526 (2012).

    Article  CAS  Google Scholar 

  28. M. Sharon, Encyclopedia of Nanoscience and Nanotechnology, Ed. by H. S. Nalwa (Am. Scientific Publ., North Lewis Way, Ca., 2004), p. 517.

  29. A. Krueger, Carbon Materials and Nanotechnology (Wiley-VCH, Weinheim, 2010).

    Book  Google Scholar 

  30. B. De and N. Karak, RSC Adv. 3(22), 8286 (2013).

    Article  CAS  Google Scholar 

  31. C. Zhu, J. Zhai, and S. Dong, Chem. Commun. 48(75), 9367 (2012).

    Article  CAS  Google Scholar 

  32. P. Morgan, Carbon Fibers and Their Composites (CRC Press, Boca Raton, 2005).

    Book  Google Scholar 

  33. M. M. Titirici, A. Thomas, and M. Antonietti, New J. Chem. 31(6), 787 (2007).

    Article  CAS  Google Scholar 

  34. B. Hu, S. H. Yu, K. Wang, L. Liu, and X. W. Xu, Dalton Trans. 40, 5414 (2008).

    Article  Google Scholar 

  35. Q. Wang, H. Li, L. Q. Chen, and X. J. Huang, Carbon 39(14), 2211 (2001).

    Article  CAS  Google Scholar 

  36. A. Romero-Anaya, M. Ouzzine, M. Lillo-Rodenas, and A. Linares-Solano, Carbon 68, 296 (2014).

    Article  CAS  Google Scholar 

  37. L. B. Tang, X. M. Li, R. B. Ji, K. S. Teng, G. Tai, J. Ye, C. S. Wei, and S. P. Lau, J. Mater. Chem. 22(12), 5676 (2012).

    Article  CAS  Google Scholar 

  38. T. Sakaki, M. Shibata, T. Miki, H. Hirosue, and N. Hayashi, Bioresour. Technol. 58(2), 197 (1996).

    Article  CAS  Google Scholar 

  39. A. Kruse, Biofuels, Bioprod. Biorefin. 2(5), 415 (2008).

    Article  CAS  Google Scholar 

  40. C. Falco, P. F. Caballero, F. Babonneau, C. Gervais, G. Laurent, M. M. Titirici, and N. Baccile, Langmuir 27(23), 14460 (2011).

    Article  CAS  Google Scholar 

  41. M. Moller, F. Harnisch, and U. Schroder, RSC Adv. 3(27), 11035 (2013).

    Article  Google Scholar 

  42. X. W. Lu, P. J. Pellechia, J. R. V. Flora, and N. D. Berge, Bioresour. Technol. 138(180) (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Shchipunov.

Additional information

Original Russian Text © Yu.A. Shchipunov, O.N. Khlebnikov, V.E. Silant’ev, 2015, published in Russian in Vysokomolekulyarnye Soedineniya, Ser. B, 2015, Vol. 57, No. 1, pp. 18–25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchipunov, Y.A., Khlebnikov, O.N. & Silant’ev, V.E. Carbon quantum dots hydrothermally synthesized from chitin. Polym. Sci. Ser. B 57, 16–22 (2015). https://doi.org/10.1134/S1560090415010121

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090415010121

Keywords

Navigation