Polymer Science Series B

, Volume 57, Issue 1, pp 16–22 | Cite as

Carbon quantum dots hydrothermally synthesized from chitin

  • Yu. A. Shchipunov
  • O. N. Khlebnikov
  • V. E. Silant’ev


A simple hydrothermal treatment of chitin in dilute nitric acid (0.5–2.0 wt %) at 180°C for up to 3 h, which provides the dissolution of up to 50% of the polysaccharide and the formation of nanosized carbon quantum dots (C-dots), is proposed. Aqueous solutions of C-dot dispersions have high dispersion stability. Under illumination with a luminescent lamp, the solutions exhibit bright luminescence, the characteristic feature of which is a change in color with variation in the excitation wavelength. According to high-resolution transmission electron microscopy, the C-dots have a crystalline structure. It is specified that the proposed mechanisms of the hydrothermal carbonization of carbohydrates assume the formation of only an amorphous coal-like product. The example of the hydrothermal treatment of a sucrose solution shows that, along with the formation of a solid precipitate of spherical carbon microparticles that is described in the literature, the formation of a luminescent crystalline product occurs. This fact suggests that the carbonization mechanism is more complicated than what has been assumed.


Chitin Polymer Science Series Hydrothermal Treatment Solid Precipitate Shortwave Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. N. Baker and G. A. Baker, Angew. Chem., Int. Ed. 49(38), 6726 (2010).CrossRefGoogle Scholar
  2. 2.
    H. T. Li, Z. H. Kang, Y. Liu, and S. T. Lee, J. Mater. Chem. 22(46), 24230 (2012).CrossRefGoogle Scholar
  3. 3.
    J. Shen, Y. Zhu, X. Yang, and C. Li, Chem. Commun. 48(31), 3686 (2012).CrossRefGoogle Scholar
  4. 4.
    J. C. G. E. da Silva and H. M. R. Goncalves, TrAC, Trends Anal. Chem. 30(8), 1327 (2011).CrossRefGoogle Scholar
  5. 5.
    V. Kumar, G. Toffoli, and F. Rizzolio, ACS Med. Chem. Lett. 4(11), 1012 (2013).CrossRefGoogle Scholar
  6. 6.
    X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, and W. A. Scrivens, J. Am. Chem. Soc. 126(40), 12736 (2004).CrossRefGoogle Scholar
  7. 7.
    X. D. He, H. T. Li, Y. Liu, H. Huang, Z. H. Kang, and S. T. Lee, Colloids Surf., B 87(2), 326.Google Scholar
  8. 8.
    Y. H. Yang, J. H. Cui, M. T. Zheng, C. F. Hu, S. Z. Tan, Y. Xiao, Q. Yang, and Y. L. Liu, Chem. Commun. 48(3), 380 (2012).CrossRefGoogle Scholar
  9. 9.
    S. Liu, J. Q. Tian, L. Wang, Y. W. Zhang, X. Y. Qin, Y. L. Luo, A. M. Asiri, A. O. Al-Youbi, and X. P. Sun, Adv. Mater. 24(15), 2037 (2012).CrossRefGoogle Scholar
  10. 10.
    A. Prasannan and T. Imae, Ind. Eng. Chem. Res. 52(44), 15673 (2013).CrossRefGoogle Scholar
  11. 11.
    G. A. F. Roberts, Chitin Chemistry (MacMillan Educ., Basingstoke, Hampshire, 1992).Google Scholar
  12. 12.
    Y. Shchipunov, Pure Appl. Chem. 84(12), 2579 (2012).CrossRefGoogle Scholar
  13. 13.
    S. Hirano, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, 2000).Google Scholar
  14. 14.
    E. Khor, Curr. Opin. Solid State Mat. Sci. 6(4), 313 (2002).CrossRefGoogle Scholar
  15. 15.
    M. Sevilla and A. B. Fuertes, Chem. A. Eur. J. 15(16), 4195 (2009).CrossRefGoogle Scholar
  16. 16.
    C. K. S. Pillai, W. Paul, and C. P. Sharma, Prog. Polym. Sci. 34(7), 641 (2009).CrossRefGoogle Scholar
  17. 17.
    G. Li, Y. Du, Y. Tao, Y. Liu, S. Li, X. Hu, and J. Yang, Carbohydr. Polym. 80(3), 970 (2010).CrossRefGoogle Scholar
  18. 18.
    B. S. Chen, F. M. Li, S. X. Li, W. Weng, H. X. Guo, T. Guo, X. Y. Zhang, Y. B. Chen, T. T. Huang, X. L. Hong, S. Y. You, Y. M. Lin, K. H. Zeng, and S. Chen, Nanoscale 5(5), 1967 (2013).CrossRefGoogle Scholar
  19. 19.
    W. Lu, X. Qin, S. Liu, G. Chang, Y. Zhang, Y. Luo, A. M. Asiri, A. O. Al-Youbi, and X. Sun, Anal. Chem. 84(12), 5351 (2012).CrossRefGoogle Scholar
  20. 20.
    S. Pandey, A. Mewada, M. Thakur, S. Pillai, R. Dharmatti, C. Phadke, and M. Sharon, RSC Adv. 4(3), 1174 (2014).CrossRefGoogle Scholar
  21. 21.
    S. G. Kwon and T. Hyeon, Small 7(19), 2685 (2011).CrossRefGoogle Scholar
  22. 22.
    K. M. Sergeeva, I. V. Postnova, and Y. A. Shchipunov, Colloid J. 75(6), 779 (2013).CrossRefGoogle Scholar
  23. 23.
    C. Ding, A. Zhu, and Y. Tian, Acc. Chem. Res. 47(1), 20 (2013).CrossRefGoogle Scholar
  24. 24.
    S. K. Cushing, M. Li, F. Huang, and N. Wu, ACS Nano 8(1), 1002 (2014).CrossRefGoogle Scholar
  25. 25.
    Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca, and S. Y. Xie, J. Am. Chem. Soc. 128(24), 7756 (2006).CrossRefGoogle Scholar
  26. 26.
    H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, and S. T. Lee, Angew. Chem., Int. Ed. 49(26), 4430 (2010).CrossRefGoogle Scholar
  27. 27.
    H. Ming, Z. Ma, Y. Liu, K. Pan, H. Yu, F. Wang, and Z. Kang, Dalton Trans. 41(31), 9526 (2012).CrossRefGoogle Scholar
  28. 28.
    M. Sharon, Encyclopedia of Nanoscience and Nanotechnology, Ed. by H. S. Nalwa (Am. Scientific Publ., North Lewis Way, Ca., 2004), p. 517.Google Scholar
  29. 29.
    A. Krueger, Carbon Materials and Nanotechnology (Wiley-VCH, Weinheim, 2010).CrossRefGoogle Scholar
  30. 30.
    B. De and N. Karak, RSC Adv. 3(22), 8286 (2013).CrossRefGoogle Scholar
  31. 31.
    C. Zhu, J. Zhai, and S. Dong, Chem. Commun. 48(75), 9367 (2012).CrossRefGoogle Scholar
  32. 32.
    P. Morgan, Carbon Fibers and Their Composites (CRC Press, Boca Raton, 2005).CrossRefGoogle Scholar
  33. 33.
    M. M. Titirici, A. Thomas, and M. Antonietti, New J. Chem. 31(6), 787 (2007).CrossRefGoogle Scholar
  34. 34.
    B. Hu, S. H. Yu, K. Wang, L. Liu, and X. W. Xu, Dalton Trans. 40, 5414 (2008).CrossRefGoogle Scholar
  35. 35.
    Q. Wang, H. Li, L. Q. Chen, and X. J. Huang, Carbon 39(14), 2211 (2001).CrossRefGoogle Scholar
  36. 36.
    A. Romero-Anaya, M. Ouzzine, M. Lillo-Rodenas, and A. Linares-Solano, Carbon 68, 296 (2014).CrossRefGoogle Scholar
  37. 37.
    L. B. Tang, X. M. Li, R. B. Ji, K. S. Teng, G. Tai, J. Ye, C. S. Wei, and S. P. Lau, J. Mater. Chem. 22(12), 5676 (2012).CrossRefGoogle Scholar
  38. 38.
    T. Sakaki, M. Shibata, T. Miki, H. Hirosue, and N. Hayashi, Bioresour. Technol. 58(2), 197 (1996).CrossRefGoogle Scholar
  39. 39.
    A. Kruse, Biofuels, Bioprod. Biorefin. 2(5), 415 (2008).CrossRefGoogle Scholar
  40. 40.
    C. Falco, P. F. Caballero, F. Babonneau, C. Gervais, G. Laurent, M. M. Titirici, and N. Baccile, Langmuir 27(23), 14460 (2011).CrossRefGoogle Scholar
  41. 41.
    M. Moller, F. Harnisch, and U. Schroder, RSC Adv. 3(27), 11035 (2013).CrossRefGoogle Scholar
  42. 42.
    X. W. Lu, P. J. Pellechia, J. R. V. Flora, and N. D. Berge, Bioresour. Technol. 138(180) (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Yu. A. Shchipunov
    • 1
  • O. N. Khlebnikov
    • 1
  • V. E. Silant’ev
    • 1
  1. 1.Institute of Chemistry, Far East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations