Advertisement

Polymer Science Series B

, Volume 56, Issue 5, pp 577–582 | Cite as

Visible light photopolymerization induced by triazine derivative

  • Guoqiang Song
  • Chenlin Jiang
  • Nannan Wang
  • Mingyan Jiang
  • Jun Nie
  • Guiping Ma
Polymerization
  • 80 Downloads

Abstract

2-(3,4-Methylenedioxyphenyl)-4,6-bis-(trichloromethyl)-1,3,5-triazine as a visible light photo-initiator was used for creation of dental composite. UV-Vis absorption spectroscopy was applied to investigate photochemical behavior of initiator during the photochemical process. For the copolymerization of 2,2-bis-[4-(2-hydroxy-3-methacryloxypropoxy) phenyl] propane/triethylene glycol dimethacrylate (75/25 wt %) in the presence of photoinitiator the optimum cure rate was found; the cure rate increased with the increase in photoinitiator concentration. Compared to the commonly used tertiary amines, the camphorquinone/2-(3,4-methdioxyphenyl)-4,6-bis-(trichloromethyl)-1,3,5-triazine system reacted more quickly and the final conversion were higher than that of traditional camphorquinone/ethyl 4-N,N-dimethyl aminobenzoate system.

Keywords

Polymer Science Series Triazine Photopolymerization Final Conversion Glycol Dimethacrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Q. Shi, H. Gao, G. Q. Wu, and J. Nie, Polymer 48, 2860 (2007).CrossRefGoogle Scholar
  2. 2.
    J. F. Rabek, Mechanisms of Photophysical and Photochemical Reactions in Polymer: Theory and Practical Applications (John Wiley & Sons, New York, 1987).Google Scholar
  3. 3.
    J. P. Fouassier, Photoinitiator, Photopolymerization and Photocuring Fundamentals and Applications (Hanser, New York, 1995).Google Scholar
  4. 4.
    G. Q. Wu, S. Q. Shi, P. Xiao, and J. Nie, J. Photochem. Photobiol., A 188, 260 (2007).CrossRefGoogle Scholar
  5. 5.
    G. Webster, Chemistry and Technology of UV and EB Formulation for Coatings (Wiley/SITA Technology, London, 1997).Google Scholar
  6. 6.
    X. Gao and J. Nie, Polym. Int. 56, 707 (2007).CrossRefGoogle Scholar
  7. 7.
    M. Aydin, N. Arsu, and Y. Yagci, Macromol. Rapid Commun. 24, 718 (2003).CrossRefGoogle Scholar
  8. 8.
    A. Ledwith and M. D. Purbrich, Polymer 14, 521 (1973).CrossRefGoogle Scholar
  9. 9.
    R. S. Davidson, Advances in Physical Chemistry (Academic Press, London, 1983).Google Scholar
  10. 10.
    A. Ledwith, J. A. Bosley, and M. D. Purbrich, J. Oil Colour Chem. Assoc. 61, 95 (1978).Google Scholar
  11. 11.
    M. Aydin, N. Arsu, Y. Yagci, et al., Macromolecules 38, 4133 (2005).CrossRefGoogle Scholar
  12. 12.
    K. M. Wang, D. Z. Yang, M. Xiao, et al., Acta Biomater. 5, 2508 (2009).CrossRefGoogle Scholar
  13. 13.
    W. D. Cook, Polymer 33, 600 (1992).CrossRefGoogle Scholar
  14. 14.
    B. Vazquez, C. Elvira, and J. S. Roman, Polymer 37, 4365 (1997).CrossRefGoogle Scholar
  15. 15.
    J. Nie and C. N. Bowman, Biomaterials 23, 1221 (2002).CrossRefGoogle Scholar
  16. 16.
    K. D. Ahn, D. K. Han, S.-K. Lee, and C.-W. Lee, Macromol. Chem. Phys. 204, 1628 (2003).CrossRefGoogle Scholar
  17. 17.
    L. Angiolini, D. C. Aretti, and E. Salatell, Macromol. Chem. Phys. 201, 2646 (2000).CrossRefGoogle Scholar
  18. 18.
    G. Ullrich, D. Herzog, R. Liska, et al., J. Polym. Sci., Part A: Polym. Chem. 42, 4948 (2004).CrossRefGoogle Scholar
  19. 19.
    K. M. Wang, D. Z. Yang, M. Xiao, et al., Acta Biomater. 5, 2508 (2009).CrossRefGoogle Scholar
  20. 20.
    K. M. Wang, S. Jiang, and Q. Yu, Polym. Sci., Ser. B 53, 176 (2011).CrossRefGoogle Scholar
  21. 21.
    C. Grotzinger, D. Burget, P. Jacques, and J. P. Fouassier, Polymer 44, 3671 (2003).CrossRefGoogle Scholar
  22. 22.
    J. Jakubiak, X. Allonas, J. P. Fouassier, et al., Polymer 44, 5219 (2003).CrossRefGoogle Scholar
  23. 23.
    C. Grotzinger, D. Burget, P. Jacques, and J. P. Fouassier, Macromol. Chem. Phys. 202, 3513 (2001).CrossRefGoogle Scholar
  24. 24.
    S. Q. Shi, P. Xiao, K. M. Wang, et al., Acta Biomater. 6, 3067 (2010).CrossRefGoogle Scholar
  25. 25.
    G. Pohlers, J. C. Scaiano, R. Sinta, et al., Chem. Mater. 9, 1353 (1997).CrossRefGoogle Scholar
  26. 26.
    J. W. Stansbury and S. H. Dickens, Dent. Mater. 17, 71 (2001).CrossRefGoogle Scholar
  27. 27.
    C. Decker and K. Moussa, Macromolecules 22, 4455 (1989).CrossRefGoogle Scholar
  28. 28.
    P. Carroy, C. Decker, J. P. Dowling, and P. Pappas, Chemistry & Technology of UV & EB Formulation for Coatings (SITA Technology, London, 1996.)Google Scholar
  29. 29.
    W. D Cook, Polymer 33, 600 (1992).CrossRefGoogle Scholar
  30. 30.
    H. G. Xu, G. Q. Wu and J. Nie, J. Photochem. Photobiol., A 193, 254 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Guoqiang Song
    • 1
  • Chenlin Jiang
    • 1
  • Nannan Wang
    • 1
  • Mingyan Jiang
    • 1
  • Jun Nie
    • 1
  • Guiping Ma
    • 1
  1. 1.Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations