Advertisement

Polymer Science Series B

, Volume 56, Issue 4, pp 504–511 | Cite as

In situ formed silver nanoparticles on glass fibers grafted with polyacrylamide and their antibacterial activity

  • Yan Jiang
  • Min Cai
  • Yinghua Tian
  • Hongyan Shi
  • Yuan Liang
  • Hongwen Zhang
Composites

Abstract

In this paper, grafted polyacrylamide from the surface of glass fibers was prepared by surface initiated atom transfer radical polymerization in order to control the matrix surface structure and properties. The uniform and stable grafted polymer layer was utilized to prepare silver ions complexes, and then the silver ions were reduced by AlLiH4 to form in situ silver nanoparticles. The structure, composition, properties and surface morphology of the modified glass fibers were characterized by X-ray photoelectron spectroscopy, fourier transform infrared spectroscopy, thermo gravimetric analysis and scanning electron microscopy. The antibacterial activities of modified glass fibers against E. coli, B. subtilis and S. cerevisiae had been studied respectively by Shake Flask Method. The results show that the antibacterial ratio of Ag nanoparticles loaded glass fibers is significantly improved than that of Ag+ loaded, and the highest antibacterial ratio is 72.2% against E. coli.

Keywords

Glass Fiber Polymer Science Series ATRP Initiate Atom Transfer Radical Polymerization Surface Initiate Atom Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Benmokrane, O. Chaallal, and R. Masmoudi, Constr. Build Mater. 9, 353 (1995).CrossRefGoogle Scholar
  2. 2.
    Y. C. Chan, P. D. Vowles, G. H. Mctainsh, R. W. Simpson, D. D. Cohen, and G. M. Bailey, Chemosphere 31, 4403 (1995).CrossRefGoogle Scholar
  3. 3.
    N. Hata, K. Teraguchi, M. Yamaguchi, I. Kasahara, S. Taguchi, and G. Katsumi, Mikrochim. Acta 106, 101 (1992).CrossRefGoogle Scholar
  4. 4.
    M. Yasuda, N. Tsugita, K. Ito, S. Yamauchi, W. R. Glomm, I. Tsuji, and H. Asano, Environ. Sci. Technol. 45, 1840 (2011).CrossRefGoogle Scholar
  5. 5.
    K. Takakura and T. NishioSafer, J. Plant Res. 125, 805 (2012).CrossRefGoogle Scholar
  6. 6.
    H. Yang, Z. Yang, X. Fu, and L. Tong, Chin. J. Catal. 28, 947 (2007).CrossRefGoogle Scholar
  7. 7.
    S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr, and A. D. Russell, Lett. Appl. Microbiol. 25, 279 (1997).CrossRefGoogle Scholar
  8. 8.
    I. Sondi and B. Salopek-Sondi, J. Colloid Interface Sci. 275, 177 (2004).CrossRefGoogle Scholar
  9. 9.
    S. T. Dubas, P. Kumlangdudsana, and P. Potiyaraj, Colloids Surf. A 289, 105 (2006).CrossRefGoogle Scholar
  10. 10.
    J. L. Elechiguerra, J. L. Burt, J. R. Morones, A. Camacho-Bragado, X. Gao, H. H. Lara, and M. J. Yacaman, J. Nanobiotechnol. 3, 1 (2005).CrossRefGoogle Scholar
  11. 11.
    H. J. Lee, S. Y. Yeo, and S. H. Jeong, J. Mater. Sci. 38, 2199 (2003).CrossRefGoogle Scholar
  12. 12.
    U. C. Hipler, P. Elsner, and J. W. Fluhr, Curr. Problems Dermatol. 33, 165 (2006).CrossRefGoogle Scholar
  13. 13.
    S. Q. Jiang, E. Newton, C. W. M. Yuen, and C. W. Kan, J. Appl. Polym. Sci. 100, 4383 (2006).CrossRefGoogle Scholar
  14. 14.
    W. F. Lien, P. C. Huang, S. C. Tseng, C. H. Cheng, S. M. Lai, and W. C. Liaw, Appl. Surf. Sci. 258, 2246 (2012).CrossRefGoogle Scholar
  15. 15.
    M. Ramstedt, N. Cheng, O. Azzaroni, D. Mossialos, H. J. Mathieu, and W. T. S. Huck, Langmuir 23, 3314 (2007).CrossRefGoogle Scholar
  16. 16.
    Y. Zhang, H. Peng, W. Huang, Y. Zhou, X. Zhang, and D. Yan, J. Phys. Chem. C 112, 2330 (2008).CrossRefGoogle Scholar
  17. 17.
    H. Xu, J. Xu, Z. Zhu, H. Liu, and S. Liu, Macromolecules 39, 8451 (2006).CrossRefGoogle Scholar
  18. 18.
    Z. Wu, W. Tong, W. Jiang, X. Liu, Y. Wang, and H. Chen, Colloids Surf. B 96, 37 (2012).CrossRefGoogle Scholar
  19. 19.
    J. Pyun, T. Kowalewski, and K. Matyjaszewski, Macromol. Rapid Commun. 24, 1043 (2003).CrossRefGoogle Scholar
  20. 20.
    J. Pyun and K. Matyjaszewski, Chem. Mater. 13, 3436 (2001).CrossRefGoogle Scholar
  21. 21.
    H. Zhang, Y. Jiang, and Q. Yu, Macromol. React. Eng. 4, 251 (2010).CrossRefGoogle Scholar
  22. 22.
    A. Paschke, P. L. Neitzel, W. Walther, and G. Schuurmann, J. Chem. Eng. Data 49, 1639 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Yan Jiang
    • 1
  • Min Cai
    • 1
  • Yinghua Tian
    • 2
  • Hongyan Shi
    • 1
  • Yuan Liang
    • 1
  • Hongwen Zhang
    • 1
  1. 1.School of Materials Science and EngineeringChangzhou UniversityChangzhou, JiangsuChina
  2. 2.School of Food & BiotechnologyQiqihar UniversityQiqihar, HeilongjiangChina

Personalised recommendations