Polymer Science Series B

, Volume 56, Issue 3, pp 274–281 | Cite as

Synthesis and complexing behavior of amphiphilic starlike calix[4]arenes

  • A. V. Ten’kovstev
  • A. B. Razina
  • M. M. Dudkina


The synthesis of starlike polymers based on calix[4]arene with amphiphilic nonionogenic arms is described. For the polymer containing residues of ω-cetyl oligo(ethylene oxide) as arms, the complexing ability with respect to alkaline-metal ions and tetraphenylporphyrin is studied. It is shown that the conformation of the calixarene ring is a factor determining the efficiency of guest binding. In the case of a partially conical conformation of the macrocycle, the polymer forms stable (with a binding constant of 106) water-soluble complexes with porphyrin molecules. This phenomenon may be used to create drug-delivery systems in the photodynamic therapy of oncological diseases.


Polymer Science Series Ethylene Oxide Macrocycle Tetraphenylporphyrin Conical Conformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. J. Sheng, C. H. Nung, and H. K. Tsao, J. Phys. Chem. B 110, 21643 (2006).CrossRefGoogle Scholar
  2. 2.
    C. D. Gutsche, B. Dhawan, K. H. Na, and R. Muthukrishnan, J. Am. Chem. Soc. 103, 3782 (1981).CrossRefGoogle Scholar
  3. 3.
    J. Wang and D. C. Gutsche, Org. Chem. 67, 4423 (2002).CrossRefGoogle Scholar
  4. 4.
    F.-M. Ramyrez, L. Charbonniere, G. Muller, and J.-C. G. Bünzli, Eur. J. Inorg. Chem., No. 11, 2348 (2004).Google Scholar
  5. 5.
    J. P. Kennedy and S. Jacob, Acc. Chem. Res. 31, 835 (1998).CrossRefGoogle Scholar
  6. 6.
    N. Hadjichristidis, M. Pitsikalis, S. Pispas, and H. Iatrou, Chem. Rev. 10, 3747 (2001).CrossRefGoogle Scholar
  7. 7.
    D. Taton, M. Saule, J. Logan, R. Duran, S. Hou, E. L. Chaikof, and Y. J. Gnanou, J. Polym. Sci., Part A: Polym. Chem. 41, 1669 (2003).CrossRefGoogle Scholar
  8. 8.
    A. V. Tenkovtsev, M. M. Dudkina, L. I. Scherbinskaya, V. Aseyev, and H. Tenhu, Polymer 51, 3108 (2010).CrossRefGoogle Scholar
  9. 9.
    Z. Huang, Technol. Cancer Res. Treat. 4, 283 (2005).Google Scholar
  10. 10.
    Guofeng Gu, Min Fang, and Yuguo Du, Carbohydr. Res. 346, 2801 (2011).CrossRefGoogle Scholar
  11. 11.
    E. T. Polle, Usp. Khim. 43, 1337 (1974).CrossRefGoogle Scholar
  12. 12.
    P. Zlatuskova, I. Stibor, M. Tkadlecova, and P. Lhotak, Tetrahedron 60, 11383 (2004).CrossRefGoogle Scholar
  13. 13.
    Kwanghyun No, Yjng Ja Pak, Keun Hee Kim, and Jung Mi Shin, Bull. Korean Chem. Soc. 17, 447 (1996).Google Scholar
  14. 14.
    F. Arnaud-Neu, E. M. Collins, I. M. Deasy, G. Ferguson, S. J. Harris, I. B. Kaitner, A. J. Lough, A. McKervey, E. Marques, B. L. Ruhl, M. J. Schwing-Weill, M. J. Eileen, and J. M. Sewardt, J. Am. Chem. Soc. 111, 8681 (1989).CrossRefGoogle Scholar
  15. 15.
    S. E. Solov’eva, M. Gryuner, A. O. Omran, A. T. Gpbadullin, I. A. Litvinov, I. S. Antipin, and A. I. Konovalov, Izv. Akad. Nauk, Ser. Khim., No. 9, 2041 (2005).Google Scholar
  16. 16.
    P. Job, Ann. Chim. Appl. 9, 113 (1928).Google Scholar
  17. 17.
    H. R. Allcock, S. J. M. O’Connor, D. L. Olmejer, M. E. Napierala, and C. G. Cameron, Macromolecules 29, 7544 (1996).CrossRefGoogle Scholar
  18. 18.
    C. D. Gutsche and L. J. Bauer, J. Am. Chem. Soc. 107, 6052 (1985).CrossRefGoogle Scholar
  19. 19.
    Chunlai Tu, Lijuan Zhu, Pingping Li, Yan Chen, Yue Su, and Guoyu Zhou, Chem. Commun. 47, 6063 (2011).CrossRefGoogle Scholar
  20. 20.
    R. H. Yang, K. M. Wang, D. Xiao, and X. H. Yang, Spectrochim. Acta, Part A 59, 1595 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. V. Ten’kovstev
    • 1
  • A. B. Razina
    • 1
  • M. M. Dudkina
    • 1
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations