Polymer Science Series B

, Volume 56, Issue 1, pp 49–54 | Cite as

A MALDI mass spectrometry investigation of the compositions of the products of the partial acidolysis of MeSi(OMe)3

  • A. G. Ivanov
  • V. M. Kopylov
  • V. V. Kireev
  • R. S. Borisov
  • T. I. Fedotova
  • Yu. V. Bilichenko


The molecular-mass compositions of the products of partial acidohydrolytic polycondensation that are formed during the interaction of MeSi(OMe)3 with CH3COOH have been studied via MALDI mass spectrometry. It has been shown that, depending on the molar ratio of MeSi(OMe)3 and CH3COOH (m/n), a wide range of oligomethylmethoxysiloxanes with the average composition [MeSiO n/m (OMe)(3 − 2n/m)] p are formed. The analysis of molecular masses and 29Si NMR spectra of the products has revealed various types of molecular structures, which change from linear, branched, and cyclic to polycyclic clusters with condensed cycles after a change in the degree of polycondensation α = 100 × [2n/3m] from 66.67 to 83.33%. At a degree of polycondensation of α = 86.67% or higher, the polycyclic clusters form a spatially crosslinked structure (gel).


Polymer Science Series Polycondensation Silicon Atom AcOH Structural Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. A. Tereshenko, Polym. Sci., Ser. B 50, 249 (2008).CrossRefGoogle Scholar
  2. 2.
    T. A. Tereshenko, A. V. Shevchuk, V. V. Shevchenko, S. V. Snigir, and V. A. Pokrovskii, Polym. Sci., Ser. A 48, 1248 (2006).CrossRefGoogle Scholar
  3. 3.
    D. R. Bujalski, H. Chen, R. E. Tecklenburg, E. S. Moyer, G. A. Zank, and K. Su, Macromolecules 36, 180 (2003).CrossRefGoogle Scholar
  4. 4.
    V. V. Kireev, V. F. Posokhova, I. B. Sokol’skaya, V. P. Chuev, V. A. Dyatlov, and S. N. Filatov, Polym. Sci., Ser. B 50, 101 (2008).CrossRefGoogle Scholar
  5. 5.
    V. F. Posokhova, Candidate’s Dissertation in Chemistry (Moscow, 2008).Google Scholar
  6. 6.
    R. S. Borisov, N. Yu. Polovkov, V. G. Zaikin, and S. N. Filatov, Mass-Spektroskopiya 5, 1 (2008).Google Scholar
  7. 7.
    E. V. Egorova, N. G. Vasilenko, N. V. Demchenko, E. A. Tatarinova, and A. M. Muzafarov, Dokl. Chem. 424, 15 (2009).CrossRefGoogle Scholar
  8. 8.
    E. V. Parshina, N. G. Vasilenko, N. A. Tebeneva, N. V. Demchenko, and A. M. Muzafarov, in Proceedings of XII Andrianov Conference “Organosiloxane Compounds. Synthesis, Properties, Application”, 2005, Vol. 2, p. 18.Google Scholar
  9. 9.
    Pat. Appl. No. 2006113775104(014970), Russia (2006), Byull. Izobret., 2007, p. 32.Google Scholar
  10. 10.
    M. J. Tsai, J. Non-Cryst. Solids 298, 116 (2002).CrossRefGoogle Scholar
  11. 11.
    G. De Karmakar and D. Ganguli, J. Mater. Chem. 10, 2289 (2000).CrossRefGoogle Scholar
  12. 12.
    S. J. Sivananda, J. Am. Ceram. Soc. 70, C298 (1987).Google Scholar
  13. 13.
    F. J. Feher and T. A. Budzichowski, Org. Chem. 373, 153 (1989).CrossRefGoogle Scholar
  14. 14.
    A. M. Muzafarov, N. G. Vasilenko, E. A. Tatarinova, G. M. Ignat’eva, V. M. Myakushev, M. A. Obrezkova, I. B. Meshkov, N. V. Voronina, and O. V. Novozhilov, Polym. Sci., Ser. C 53, 48 (2011).CrossRefGoogle Scholar
  15. 15.
    A. G. Ivanov, V. M. Kopylov, V. L. Ivanova, V. A. Kovyazin, I. B. Sokol’skaya, and I. I. Khazanov, Zh. Org. Khim. 82, 69 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. G. Ivanov
    • 1
  • V. M. Kopylov
    • 2
  • V. V. Kireev
    • 3
  • R. S. Borisov
    • 4
  • T. I. Fedotova
    • 1
  • Yu. V. Bilichenko
    • 3
  1. 1.State Research Institute of Chemistry and Technology of Organoelement CompoundsMoscowRussia
  2. 2.OOO Penta-91MoscowRussia
  3. 3.Mendeleev University of Chemical TechnologyMoscowRussia
  4. 4.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations