Advertisement

Polymer Science Series B

, Volume 55, Issue 11–12, pp 634–642 | Cite as

Preparation and stabilization of silver nanoparticles by a thermo-responsive pentablock terpolymer

Composites

Abstract

Thermo-reversible silver nanoparticles (Ag-NPs) were prepared by the sodium borohydride reduction of silver nitrate (AgNO3) in the presence of a pentablock terpolymer, poly(N-isopropylacrylamide)-b-poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(N-isopropylacrylamide) (PNIPAM150-PEO136-PPO45-PEO136-PNIPAM150). The pentablock terpolymer-stabilized silver nanoparticles (Pentablock-S-Ag) were characterized by UV-VIS spectroscopy, X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and transmission electron microscopy (TEM). At temperatures below lower critical solution temperature (LCST) of Pentablock-S-Ag solutions, the obtained Ag-NPs are well-dispersed with spherical shape, and their sizes mainly depend upon the molar ratios of pentablock terpolymer to AgNO3; at temperatures above LCST, the size of Ag-NPs decreases and their aggregates are observed due to the collapse and shrinkage of the thermo-responsive PNIPAM and PPO segments. A reversible dispersion-aggregation process upon recyclically changing temperature is also observed.

Keywords

Silver Nanoparticles Surface Enhance Raman Scattering Polymer Science Series Ethylene Oxide Lower Critical Solution Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Link and M. A. El-Sayed, J. Phys. Chem. B 103, 4212 (1999).CrossRefGoogle Scholar
  2. 2.
    C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, Chem. Soc. Rev. 29, 27 (2000).CrossRefGoogle Scholar
  3. 3.
    Y. Sun and Y. Xia, Science 298, 2176 (2002).CrossRefGoogle Scholar
  4. 4.
    F. Wu and Q. Yang, Nano Res. 4, 861 (2011).CrossRefGoogle Scholar
  5. 5.
    A. G. Skirtach, A. M. Javier, O. Kreft, K. Kohler, A. P. Alberola, H. Mohwald, W. J. Parak, and G. B. Sukhorukov, Angew. Chem., Int. Ed. 45, 4612 (2006).CrossRefGoogle Scholar
  6. 6.
    P. Raveendran, J. Fu, and S. L. Wallen, J. Am. Chem. Soc. 125, 13940 (2003).CrossRefGoogle Scholar
  7. 7.
    Y. Ofir, B. Samanta, and V. M. Rotello, Chem. Soc. Rev. 37, 1814 (2008).CrossRefGoogle Scholar
  8. 8.
    A. B. R. Mayer, Polym. Adv. Technol. 12, 96 (2001).CrossRefGoogle Scholar
  9. 9.
    Y. Lu, G. Liu, and L. P. Lee, Nano Lett. 5, 5 (2005).CrossRefGoogle Scholar
  10. 10.
    S. Gupta, M. Agrawal, P. Uhlmann, F. Simon, and M. Stamm, Chem. Mater. 22, 504 (2010).CrossRefGoogle Scholar
  11. 11.
    T. Wu, Z. Ge, and S. Liu, Chem. Mater. 23, 2370 (2011).CrossRefGoogle Scholar
  12. 12.
    X. Lin, X. Teng, and H. Yang, Langmuir 19, 10081 (2003).CrossRefGoogle Scholar
  13. 13.
    R. Narayanan and M. A. El-Sayed, J. Phys. Chem. B 109, 12663 (2005).CrossRefGoogle Scholar
  14. 14.
    Q. Zhou, G. Qian, Y. Li, G. Zhao, Y. Chao, and J. Zheng, Thin Solid Films 516, 953 (2008).CrossRefGoogle Scholar
  15. 15.
    Y. Ma, J. Yi, and L. Zhang, J. Macromol. Sci., A 46, 643 (2009).CrossRefGoogle Scholar
  16. 16.
    G. Dong, X. Xiao, X. Liu, B. Qian, Z. Ma, S. Ye, D. Chen, and J. Qiu, J. Nano. Res. 12, 1319 (2010)CrossRefGoogle Scholar
  17. 17.
    D. Radziuk, A. Skirtach, G. Sukhorukov, D. Shchukin, and H. Mohwald, Macromol. Rapid Commun. 28, 848 (2007).CrossRefGoogle Scholar
  18. 18.
    J. Yang, H. Yin, J. Jia, and Y. Wei, Langmuir 27, 5047 (2011).CrossRefGoogle Scholar
  19. 19.
    R. Shankar, L. Groven, A. Amert, K. W. Whitesb, and J. J. Kellar, J. Mater. Chem. 21, 10871 (2011).CrossRefGoogle Scholar
  20. 20.
    L. Guo, J. Nie, B. Du, Z. Peng, B. Tesche, and K. Kleinermanns, J. Colloid Interface Sci. 319, 175 (2008).CrossRefGoogle Scholar
  21. 21.
    Y. Sun, Y. Liu, G. Zhao, X. Zhou, J. Gao, and Q. Zhang, J. Mater. Sci. 43, 4625 (2008).CrossRefGoogle Scholar
  22. 22.
    L. Suber, I. Sondi, E. Matijevic, and D. V. Goia, J. Colloid Interface Sci. 288, 489 (2005).CrossRefGoogle Scholar
  23. 23.
    Y. Wen, X. Jiang, G. Yin, and J. Yin, Chem. Commun. 43, 6595 (2009).CrossRefGoogle Scholar
  24. 24.
    I. Pastoriza-Santos and L. M. Liz-Marzan, Langmuir 18, 2888 (2002).CrossRefGoogle Scholar
  25. 25.
    N. Kakati, S. Mahapatra, and N. Karak, J. Macromol. Sci., A 45, 658 (2008).CrossRefGoogle Scholar
  26. 26.
    R. W. J. Scott, O. M. Wilson, and R. M. Crooks, J. Phys. Chem. B 109, 692 (2005).CrossRefGoogle Scholar
  27. 27.
    D. G. Angelescu, M. Vasilescu, M. Anastasescu, R. Baratoiu, D. Donescu, and V. S. Teodorescu, Colloid Surf. A 394, 57 (2012).CrossRefGoogle Scholar
  28. 28.
    P. Yin, Y. Chen, L. Jiang, T. You, X. Lu, L. Guo, and S. Yang, Macromol. Rapid Commun. 32, 1000 (2011).CrossRefGoogle Scholar
  29. 29.
    K. Tsutsumi, Y. Funaki, Y. Hirokawa, and T. Hashim- oto, Langmuir 15, 5200 (1999).CrossRefGoogle Scholar
  30. 30.
    J. Y. Lee, R. B. Thompson, D. Jasnow, and A. C. Bal- azs, Macromolecules 35, 4855 (2002).CrossRefGoogle Scholar
  31. 31.
    J. J. Chiu, B. J. Kim, E. J. Kramer, and D. J. Pine, J. Am. Chem. Soc. 127, 5036 (2005).CrossRefGoogle Scholar
  32. 32.
    L. M. Bronstein, S. N. Sidorov, V. Zhirov, D. Zhirov, Y. A. Kabachii, S. Y. Kochev, P. M. Valetsky, B. Stein, O. I. Kiseleva, S. N. Polyakov, E. V. Shtykova, E. V. Nikulina, D. I. Svergun, and A. R. Khokhlov, J. Phys. Chem. B 109, 18786 (2005).CrossRefGoogle Scholar
  33. 33.
    M. D. Lefebvre and K. R. Shull, Macromolecules 39, 3450 (2006).CrossRefGoogle Scholar
  34. 34.
    R. B. Thompson, V. V. Ginzburg, M. W. Matsen, and A. C. Balazs, Science 292, 2469 (2001).CrossRefGoogle Scholar
  35. 35.
    P. Taladriz-Blanco, N. J. Buurma, L. Rodriguez- Lorenzo, J. Perez-Juste, L. M. Liz-Marzan, and P. Herves, J. Mater. Chem. 21, 16880 (2011).CrossRefGoogle Scholar
  36. 36.
    I. K. Voets, A. De Keizer, P. M. Frederik, R. Jellema, and M. A. C. Stuart, J. Colloid Interface Sci. 339, 317 (2009).CrossRefGoogle Scholar
  37. 37.
    Y. Lu, Y. Mei, M. Ballauff, and M. Drechsler, J. Phys. Chem. B 110, 3930 (2006).CrossRefGoogle Scholar
  38. 38.
    J. Zhou, J. Ralston, R. Sedev, and D. A. Beattie, J. Colloid Interface Sci. 331, 251 (2009).CrossRefGoogle Scholar
  39. 39.
    M. Hasan, D. Bethell, and M. Brust, J. Am. Chem. Soc. 124, 1132 (2002).CrossRefGoogle Scholar
  40. 40.
    J. Hu, J. Zhang, F. Liu, K. Kittredge, J. K. Whitesell, and M. A. Fox, J. Am. Chem. Soc. 123, 1464 (2001).CrossRefGoogle Scholar
  41. 41.
    R. T. A. Mayadunne, E. Rizzardo, J. Chiefari, J. Krstina, G. Moad, A. Postma, and S. H. Thang, Macromolecules 33, 243 (2000).CrossRefGoogle Scholar
  42. 42.
    G. Moad, Y. K. Chong, A. Postma, E. Rizzardo, and S. H. Thang, Polymer 46, 8458 (2005).CrossRefGoogle Scholar
  43. 43.
    J. R. McKee, V. Ladmiral, J. Niskanen, H. Tenhu, and S. P. Armes, Macromolecules 44, 7692 (2011).CrossRefGoogle Scholar
  44. 44.
    G. Moad, E. Rizzardo, and S. H. Thang, Polymer 49, 1079 (2008).CrossRefGoogle Scholar
  45. 45.
    Y. Wu, X. Liu, Y. Wang, Z. Guo, and Y. Feng, Macromol. Chem. Phys. 213, 1489 (2012).CrossRefGoogle Scholar
  46. 46.
    S. He, J. Yao, P. Jiang, D. Shi, H. Zhang, S. Xie, S. Pang, and H. Gao, Langmuir 17, 1571 (2001).CrossRefGoogle Scholar
  47. 47.
    A. Sileikaite, J. Puiso, I. Prosycevas, and S. Tamulevi- cius, Mater. Sci.-Medzg. 15, 21 (2009).Google Scholar
  48. 48.
    S. Pal, Y. K. Tak, and J. M. Song, Appl. Environ. Microb. 73, 1712 (2007).CrossRefGoogle Scholar
  49. 49.
    U. Kreibig, M. Gartz, and A. Hilger, Phys. Chem. Chem. Phys. 101, 1593 (1997).Google Scholar
  50. 50.
    R. Brause, H. Moltgen, and K. Kleinermanns, Appl. Phys. B 75, 711 (2002).CrossRefGoogle Scholar
  51. 51.
    J. A. Creighton, D. G. Eadon, J. Chem. Soc., Faraday Trans. 87, 3881 (1991).CrossRefGoogle Scholar
  52. 52.
    D. H. Chen and Y. W. Huang, J. Colloid Interface Sci. 255, 299 (2002).CrossRefGoogle Scholar
  53. 53.
    G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908).CrossRefGoogle Scholar
  54. 54.
    Y. Wang, Y. Li, X. Yang, Y. Yuan, L. Yan, and J. Wang, Macromolecules 42, 3026 (2009).CrossRefGoogle Scholar
  55. 55.
    J. Raula, J. Shan, M. Nuopponen, A. Niskanen, H. Jiang, E. I. Kauppinen, and H. Tenhu, Langmuir 19, 3499 (2003).CrossRefGoogle Scholar
  56. 56.
    X. Lian, J. Jin, J. Tian, and H. Zhao, ACS Appl. Mater. Int. 2, 2261 (2010).CrossRefGoogle Scholar
  57. 57.
    T. Zhang, Z. Zheng, X. Ding, and Y. Peng, Macromol. Rapid Commun. 29, 1716 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Chengdu Institute of Organic ChemistryChinese Academy of SciencesChengduChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations