Advertisement

Polymer Science Series B

, Volume 55, Issue 11–12, pp 566–572 | Cite as

Surface modification of ethylene-vinyl acetate membrane grafted with poly(N-isopropylacrylamide) by UV-irradiation

  • Yanying Wang
  • Li Zhang
  • Shibo Gao
  • Mei Gong
  • Di Huang
  • Xiaoyan Wang
  • Yubao Li
Polymer Modification
  • 79 Downloads

Abstract

Surface modification of ethylene-vinyl acetate membrane by grafting poly(N-isopropylacrylamide) was initiated under UV-irradiation. Besides benzophenone and ammonium persulfate were used as initiators, which could enhance the yield of grafting markedly. The occurrence of grafting polymerization of N-isopropylacrylamide was testified by the attenuated total multiple reflection technique and X-ray photoelectron spectroscopy. Scanning electron micrograph showed that the surface morphology of ethylene-vinyl acetate membrane changed after modification. The lower critical solution temperature of the membrane was determined by differential scanning calorimetry. The wettability of membrane was investigated by water contact angle measurement. The results showed that the grafting degree increased with irradiation time, monomer and ammonium persulfate concentration at the beginning of reaction. It was also found that the modified membrane surface became hydrophilic and displayed thermosensitivity similar to that of poly(N-isopropylacrylamide) gel, and the lower critical solution temperature was about 32°C.

Keywords

Contact Angle Polymer Science Series Lower Critical Solution Temperature PNIPAAm Isosor Bide Dinitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Skeist, Handbook of Adhesives (Van Nostrand Reinhold, New York, 1977), p. 484.Google Scholar
  2. 2.
    R. Langer, H. Brem, and D. Tapper, J. Biomed. Mater. Res. 15, 267 (1981).CrossRefGoogle Scholar
  3. 3.
    P. N. Sawyer, M. Page, B. Rudewald, H. Lagergren, L. Baselius, C. McCool, W. Halperin, and S. Srinivasan, Trans. Am. Soc. Artif. Intern. Organs 17, 470 (1971).Google Scholar
  4. 4.
    Sustained Release Medications, Ed. by J. C. Johnson (Noyes Data, Park Ridge, 1980), p. 96.Google Scholar
  5. 5.
    B. D. Gennaro, O. Solomon, L. Kopec, E. Korostof, and J. L. Ackerman, in Controlled Release Polymeric Formulations, Ed. by D. R. Paul and F. W. Harris (American Chemical Society, Washington, 1976), p. 135.Google Scholar
  6. 6.
    S. Miyazaki, S. Takeuchi, and K. Takada, Chem. Pharm. Bull. 32, 1633 (1984).CrossRefGoogle Scholar
  7. 7.
    F. Ocak and I. Agabeyoglu, Int. J. Pharm. 180, 177 (1999).CrossRefGoogle Scholar
  8. 8.
    Y. Morimoto, T. Seki, K. Sugibayashi, K. Juni, and S. Miyazaki, Chem. Pharm. Bull. 36, 2633 (1988).CrossRefGoogle Scholar
  9. 9.
    D. Wandera, S. R. Wickramasinghe, and S. M. Husson, J. Membr. Sci. 373, 178 (2011).CrossRefGoogle Scholar
  10. 10.
    B. H. Liu, J. L. Hu, and Q. H. Meng, J. Biomed. Mater. Res. B 89, 1 (2009).CrossRefGoogle Scholar
  11. 11.
    Y. Liu, L. Mu, B. H. Liu, and J. L. Kong, Chem.-Eur. J. 11, 2622 (2005).CrossRefGoogle Scholar
  12. 12.
    P. M. Mendes, Chem. Soc. Rev. 37, 2512 (2008).CrossRefGoogle Scholar
  13. 13.
    S. Nayak and L. A. Lyon, Angew. Chem., Int. Ed. Engl. 44, 7686 (2005).CrossRefGoogle Scholar
  14. 14.
    R. Pelton, Adv. Colloid Interface Sci. 85, 1 (2000).CrossRefGoogle Scholar
  15. 15.
    A. Kikuchi and T. Okano, Prog. Polym. Sci. 27, 1165 (2002).CrossRefGoogle Scholar
  16. 16.
    S. Jiang, J. Lue, J. J. Hsu, and T. C. Wei, J. Membr. Sci. 321, 146 (2008).CrossRefGoogle Scholar
  17. 17.
    H. T. Pu, Z. L. Ding, and Z. Ma, J. Appl. Polym. Sci. 62, 1529 (1996).CrossRefGoogle Scholar
  18. 18.
    L. Liang, X. D. Feng, L. Peurrung, and V. Viswanathan, J. Membr. Sci. 162, 235 (1999).CrossRefGoogle Scholar
  19. 19.
    T. Kavc, W. Kern, M. F. Ebel, R. Svagera, and P. Polt, Chem. Mater. 12, 1053 (2000).CrossRefGoogle Scholar
  20. 20.
    D. S. Wavhal and E. R. Fisher, Langmuir 19, 79 (2003).CrossRefGoogle Scholar
  21. 21.
    L. S. Wan, Z. M. Liu, and Z. K. Xu, Soft Matter 5, 1775 (2009).CrossRefGoogle Scholar
  22. 22.
    C. Decker and K. Zahouily, J. Polym. Sci., Part A: Polym. Chem. 36, 2571 (1998).CrossRefGoogle Scholar
  23. 23.
    B. Pan, K. Viswanathan, C. E Hoyle, and R. B. Moore, J. Polym. Sci., Part A: Polym. Chem. 42, 1953 (2004).CrossRefGoogle Scholar
  24. 24.
    T. Kondo, M. Koyama, H. Kubota, and R. Katakai, J. Appl. Polym. Sci. 67, 2057 (1998).CrossRefGoogle Scholar
  25. 25.
    D. Ruckert and G. Geuskens, Eur. Polym. J. 32, 201 (1996).CrossRefGoogle Scholar
  26. 26.
    J. P. Deng and W. T. Yang, J. Beijing Univ. Chem. Technol. 27, 16 (2000).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • Yanying Wang
    • 1
    • 2
  • Li Zhang
    • 2
  • Shibo Gao
    • 2
  • Mei Gong
    • 2
  • Di Huang
    • 2
  • Xiaoyan Wang
    • 2
  • Yubao Li
    • 2
  1. 1.College of Life and ScienceSichuan Agricultural UniversityYa’anChina
  2. 2.Research Center for Nano-Biomaterials, Analytical and Testing CenterSichuan UniversityChengduChina

Personalised recommendations