Polymer Science Series B

, Volume 55, Issue 3–4, pp 158–163 | Cite as

Eu(III) complex-doped PMMA having fast radiation rate and high emission quantum efficiency

Functional Polymers

Abstract

Three ternary luminescent complexes, Eu (deuterated 1,3-diphenyl-1,3-propanedione)3(1,10-phenanthroline), Eu (deuterated 1,3-diphenyl-1,3-propanedione)3(2,2′-bipyridine), and Eu (deuterated 1,3-diphenyl-1,3-propanedione)3 (bathophenanthroline) were synthesized using bidental oxygen and nitrogen as ligands. Luminescent polymers were fabricated by incorporating deuterated Eu(III) complexes in a poly(methyl methacrylate) matrix. Luminescent poly(methyl methacrylate) containing Eu (deuterated 1,3-diphenyl-1,3-propanedione)3 (bathophenanthroline) exhibited relatively higher quantum yield, faster radiation rate, sharper red emission and larger stimulated emission cross-section (quantum yield 36%, radiation rate 8.6 × 102 s−1, full width at half maximum 3.4 nm, and stimulated emission cross-section σ p = 1.4 × 10−20 cm2) of the PMMA matrix. The value of σ p was the same order as the values of Nd-glass laser for practical use. Additionally, the thermal behaviors of the Eu(III) ternary complexes were studied, and the results indicated that all of them can be long-term used in high temperature environment. Prepared luminescent polymer including Eu (deuterated 1,3-diphenyl-1,3-propanedione)3 (bathophenanthroline) showed promising results for applications in novel organic Eu(III) devices, such as high-power laser materials and optical fibers.

Keywords

PMMA Phen Polymer Science Series Bipy PMMA Matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Klonkowski, S. Lis, M. Pietraszkiewicz, and Z. Hnatejko, K. Czarnobaj, and M. Elbanowski, Chem. Mater. 15, 656 (2003).CrossRefGoogle Scholar
  2. 2.
    B. Yan, H. Zhang, and S. Wang, Mater. Res. Bull. 33, 1517 (1998).CrossRefGoogle Scholar
  3. 3.
    J. Zhou and M. Z. Su, Chem. J. Chin. Univ. 14, 314 (1993).Google Scholar
  4. 4.
    K. Binnemans, Chem. Rev. 9, 4283 (2009).CrossRefGoogle Scholar
  5. 5.
    E. J. Schimitschec and E. G. K. Schwarz, Nature (London) 196, 832 (1962).CrossRefGoogle Scholar
  6. 6.
    K. Manseki, Y. Hasegawa, Y. Wada, and S. Yanagida, J. Alloys Compd. 408–412, 805 (2006).CrossRefGoogle Scholar
  7. 7.
    L. J. Dou, J. Wang, J. B. Yan, H. Wu, Y. Y. Wang, and B. Sun, J. Chin. Soc. Rare Earths 27, 587 (2009).Google Scholar
  8. 8.
    Q. L. Suo, H. M. Xiao, Y. B. Wang, and Y. Zheng, J. Chin. Soc. Rare Earths 23. 654 (2005).Google Scholar
  9. 9.
    Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. J. Yanagida, J. Phys. Chem. 107, 1697 (2003).CrossRefGoogle Scholar
  10. 10.
    K. Nakamura, Y. Hasegawa, Y. Wada, and S. Yanagida, Chem. Phys. Lett. 398, 500 (2004).CrossRefGoogle Scholar
  11. 11.
    R. Pavithran, N. S. S. Kumar, S. Biju, M. L. P. Reddy, S. A. Junior, and R. O. Freire, Inorg. Chem. 45, 2184 (2006).CrossRefGoogle Scholar
  12. 12.
    J. Xu, Laser Cutting-Edge Materials Science and Technology (Shanghai, Jiaotong University, 2007).Google Scholar
  13. 13.
    Y. Hasegawa, Y. Wada, S. Yanagida, H. Kawai, N. Yasuda, and T. Nagamura, Appl. Phys. Lett. 83, 3599 (2003).CrossRefGoogle Scholar
  14. 14.
    Q. Xin, W. L. Li, and T. L. Li, Optoelectron. Laser 19, 10 (2008).Google Scholar
  15. 15.
    Z. J. Wang and I. D. W. Samuel, J. Lumin. 111, 199 (2005).CrossRefGoogle Scholar
  16. 16.
    A. V. Yakimanskii, M. N. Bochkarev, M. A. Goikhman, I. V. Podeshvo, A. N. Konev, T. D. Anan’eva, R. Yu. Smyslov, T. N. Nekrasova, and N. L. Loretsyan, J. Opt. Technol. 78, 430 (2011).CrossRefGoogle Scholar
  17. 17.
    N. J. Xiang, T. H. Lee, Y. Y. Wang, M. L. Gong, L. M. Leung, and J. X. Shi, J. Chin. Soc. Rare Earths 22, 871 (2004).Google Scholar
  18. 18.
    K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, J. Phys. Chem. 111, 3029 (2007).CrossRefGoogle Scholar
  19. 19.
    J. G. Buenzli and C. Piquet, Chem. Soc. Rev. 4, 1048 (2005).CrossRefGoogle Scholar
  20. 20.
    K. L. Eckerle, W. H. Venable, and V. R. Weidner, Appl. Opt. 15, 703 (1976).CrossRefGoogle Scholar
  21. 21.
    X. Zhang, J. Lumin. 130, 1060 (2010).CrossRefGoogle Scholar
  22. 22.
    Y. Ma and Y. Wang, Coord. Chem. Rev. 254, 972 (2010).CrossRefGoogle Scholar
  23. 23.
    K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Wada, and S. Yanagida, J. Alloys Compd. 408–412, 771 (2006).CrossRefGoogle Scholar
  24. 24.
    Y. S. Yang, M. L. Gong, Y. Y. Li, H. Y. Lei, and S. L. Wu, J. Alloys Compd. 207–208, 112 (1994).CrossRefGoogle Scholar
  25. 25.
    J. H. Forsberg, Coord. Chem. Rev. 10, 195 (1973).CrossRefGoogle Scholar
  26. 26.
    Y. Hasegawa, H. Kawai, K. Nakamura, N. Yasuda, Y. Wada, and S. Yanagida, J. Alloys Compd. 408–412, 669 (2006).CrossRefGoogle Scholar
  27. 27.
    F. X. Gan, Laser Materials (World Scientific, Singapore, 1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.China Academy of Engineering PhysicsMianyangChina
  2. 2.Mianyang Normal UniversityMianyangChina

Personalised recommendations