Polymer Science Series B

, Volume 54, Issue 9–10, pp 427–433 | Cite as

Benzophenone-initiated grafting photopolymerization of acrylic acid on the surface of polyethylene from the monomer aqueous solution without its deaeration

  • O. N. Tretinnikov
  • V. V. Pilipenko
  • L. K. Prikhodchenko


The photoinduced grafting polymerization of a functional monomer (acrylic acid) is performed on the surface of a polymeric material (polyethylene film) from a nondeaerated aqueous solution of the monomer with the use of a water-insoluble photoinitiator (benzophenone). According to the developed method, the photoinitiator is first deposited on the surface of the polyethylene film from solution in a volatile solvent; then, the surface of the film is covered with a layer of the nondeaerated aqueous solution of the monomer, over which a quartz plate or the second polyethylene film is placed, and the resulting sandwich is exposed to UV radiation. This method is highly efficient when the thickness of the monomer-solution layer is less than 100 μm. Owing to the small thickness of the monomer solution layer and the absence of the inflow of atmospheric oxygen, molecular oxygen that is initially contained in the monomer solution is rapidly consumed in photooxidation reactions occurring on the surface of the substrate polymer; therefore, molecular oxygen insignificantly affects the efficiency of grafting polymerization.


Contact Angle Acrylic Acid ZnSe Polymer Science Series Benzophenone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Kato, E. Uchida, E. T. Kang, Y. Uyama, and Y. Ikada, Prog. Polym. Sci. 28, 209 (2003).CrossRefGoogle Scholar
  2. 2.
    M. M. Nasef and E. S. A. Hegazy, Prog. Polym. Sci. 29, 499 (2004).CrossRefGoogle Scholar
  3. 3.
    M. Ulbricht, Polymer 47, 2217 (2006).CrossRefGoogle Scholar
  4. 4.
    S. Tazuke and H. Kimura, Makromol. Chem. 179, 2603 (1978).CrossRefGoogle Scholar
  5. 5.
    K. Allmer, A. Hult, and B. Ranby, J. Polym. Sci., Part A: Polym. Chem. 26, 2099 (1988).CrossRefGoogle Scholar
  6. 6.
    O. N. Tretinnikov, V. V. Pilipenko, and L. K. Prikhodchenko, Polymer Science, Ser. B 53, 171 (2011) [Vysokomol. Soedin., Ser. B 53, 602 (2011)].CrossRefGoogle Scholar
  7. 7.
    T. Rohr, D. F. Ogletree, F. Svec, and J. M. J. Frechet, Adv. Funct. Mater. 13, 264 (2003).CrossRefGoogle Scholar
  8. 8.
    W. Lee, D. Choi, Y. Lee, D. N. Kim, J. Park, and W. G. Koh, Sens. Actuators B 129, 841 (2008).CrossRefGoogle Scholar
  9. 9.
    M. H. Schneider, H. Willaime, Y. Tran, F. Rezgui, and P. Tabeling, Anal. Chem. 82, 8848 (2010).CrossRefGoogle Scholar
  10. 10.
    W. Yang and B. Ranby, Eur. Polym. J. 35, 1557 (1999).CrossRefGoogle Scholar
  11. 11.
    L. S. Wan, X. L. Meng, Y. F. Yang, J. Tian, and Z. K. Xu, Sci. China, Ser. A: Chem. 53, 183 (2010).CrossRefGoogle Scholar
  12. 12.
    Y. Cao, H. Wang, C. Yang, R. Zhong, Y. Lei, K. Sun, and J. Liu, Appl. Surf. Sci. 257, 7521 (2011).CrossRefGoogle Scholar
  13. 13.
    C. Decker and A. D. Jenkins, Macromolecules 18, 1241 (1985).CrossRefGoogle Scholar
  14. 14.
    Y. Yagci, S. Jockusch, and N. J. Turro, Macromolecules 43, 6245 (2010).CrossRefGoogle Scholar
  15. 15.
    S. Krimm, C. Liang, and G. Sutherland, J. Chem. Phys. 25, 549 (1956).CrossRefGoogle Scholar
  16. 16.
    M. M. Patel, J. D. Smart, T. G. Nevell, R. J. Ewen, P. J. Eaton, and J. Tsibouklis, Biomacromolecules 4, 1184 (2003).CrossRefGoogle Scholar
  17. 17.
    N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967; Mir, Moscow, 1970).Google Scholar
  18. 18.
    G. Geuskens and C. David, Pure Appl. Chem. 51, 233 (1979).CrossRefGoogle Scholar
  19. 19.
    J. Lacoste, D. J. Carlsson, S. Falicki, and D. M. Wiles, Polym. Degrad. Stab. 34, 309 (1991).CrossRefGoogle Scholar
  20. 20.
    L. Giering, M. Berger, and C. Steel, J. Am. Chem. Soc. 96, 953 (1974).CrossRefGoogle Scholar
  21. 21.
    W. M. Nau and J. C. Scaiano, J. Phys. Chem. 100, 11360 (1996).CrossRefGoogle Scholar
  22. 22.
    R. Battino, T. R. Rettich, and T. Tominaga, J. Phys. Chem. Ref. Data 12, 163 (1983).CrossRefGoogle Scholar
  23. 23.
    D. J. Carlsson and D. M. Wiles, J. Polym. Sci., Part C: Polym. Lett. 11, 759 (1973).Google Scholar
  24. 24.
    D. Guillet, Polymer Photophysics and Photochemistry (Cambridge Univ. Press, London, 1985; Mir, Moscow, 1988).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • O. N. Tretinnikov
    • 1
  • V. V. Pilipenko
    • 1
  • L. K. Prikhodchenko
    • 1
  1. 1.Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations