Polymer Science Series B

, Volume 54, Issue 7–8, pp 392–398 | Cite as

Introduction of PEGs on pore-wall of three-dimensionally ordered macroporous cross-linked polystyrene for catalyzation of α-butylation of phenylacetonitrile

  • Qing Qing Wang
  • Xiao Mei Wang
  • Lei Feng
  • Xiao Lei Xu
  • Xu Zhang
Catalysis

Abstract

Three-dimensionally ordered macroporous cross-linked polystyrenes (3DOM CLPS) attached polyethylene glycols (PEGs) with different molecular weights were prepared for use as a novel tri-phase transfer catalyst. The 3DOM catalysts were characterized by FTIR and SEM. The catalytic activity of functionalized 3DOM CLPS was evaluated using α-butylation reaction of phenylacetonitrile in organic phase and potassium hydroxide aqueous solution in water phase as a model system. The effects of various factors on the phase transfer catalysis reaction of liquid-solid-liquid were investigated. Reusing performance of the catalyst was also examined. The results show that the 3DOM CLPS attached PEG400 is an effective and stable tri-phase catalyst for α-butylation reaction. The reaction yield increases with the increasing of temperature and extension of time. After reusing for eight times, the PEG chains did not run off and the ordered structure was well preserved, and the yield of α-butyl phenylacetonitrile was still above 90%.

Keywords

PEG400 Polymer Science Series Pore Wall Phase Transfer Phase Transfer Catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. D. Naik and L. K. Doraiswamy, AIChE Journal 44, 612 (1998).CrossRefGoogle Scholar
  2. 2.
    Y. C. Fiamegos and C. D. Stalikas, Anal. Chim. Acta 550, 1 (2005).CrossRefGoogle Scholar
  3. 3.
    D. Albanese, D. Landini, A. Maia, and M. Penso, J. Mol. Catal, A Chem. 150, 113 (1999).CrossRefGoogle Scholar
  4. 4.
    S. K. Maity, N. C. Pradhan, and V. Anand, Appl. Catal. B: Environ. 77, 418 (2008).CrossRefGoogle Scholar
  5. 5.
    B. J. Gao, R. B. Zhuang, and J. F. Guo, AIChE Journal 56, 729 (2010).CrossRefGoogle Scholar
  6. 6.
    K. Hasegawa, S. Arai, and A. Nishida, Tetrahedron 62, 1390 (2006).CrossRefGoogle Scholar
  7. 7.
    S. Arai, K. Hasegawa, and A. Nishida, Tetrahedron. Lett. 45, 1023 (2004).CrossRefGoogle Scholar
  8. 8.
    D. Landini and A. Maia, J. Mol. Catal. A 204–205, 235 (2003).Google Scholar
  9. 9.
    S. X. Yu, Z. X. Tian, and W. J. Ping, Mod. Chem. Ind. (in Chinese) 19, 30 (1999).Google Scholar
  10. 10.
    S. X. Yu, L. Z. Liu, and J. W. Yang, Acta. Sci. Nat. Univ. Norm. Hunan. (in Chinese) 16, 156 (1993).Google Scholar
  11. 11.
    S. Schlick, E. Bortel, and K. Dyrek, Acta. Polym. 47, 1 (1996).CrossRefGoogle Scholar
  12. 12.
    R. Haag and S. Roller, Top. Curr. Chem. 242, 1 (2004).CrossRefGoogle Scholar
  13. 13.
    P. M. Mirzai and W. R. McWhinnie, Inorg. Chim. Acta. 52, 211 (1981).CrossRefGoogle Scholar
  14. 14.
    C. L. Lin and T. J. Pinnavaia, Chem. Mater. 3, 213 (1991).CrossRefGoogle Scholar
  15. 15.
    J. X. Huang, Chin. J. Pharmaceu. (in Chinese) 22, 324 (1991).Google Scholar
  16. 16.
    B. T. Holland, C. F. Blanford, and A. Stein, Science 281, 538 (1998).CrossRefGoogle Scholar
  17. 17.
    A. Stein, Microporous Mesoporous Mater. 44, 227 (2001).CrossRefGoogle Scholar
  18. 18.
    B. J. Melde and A. Stein, Chem. Mater. 14, 3326 (2002).CrossRefGoogle Scholar
  19. 19.
    M. Rinivasan, C. Ferraris, and T. Whit, Environ. Sci. Technol. 40, 7054 (2006).CrossRefGoogle Scholar
  20. 20.
    R. C. Schroden, M. Al-Daous, S. Sokolov, B. J. Melde, J. C. Lytle, A. Stein, M. C. Carbajo, J. T. Fernández, and E. E. Rodríguez, Mater. Chem. 12, 3261 (2002).CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, H. Liang, X. Y. Gao, and Y. Liu, Catal. Commun. 10, 1432 (2009).CrossRefGoogle Scholar
  22. 22.
    Q. Z. Wu, J. F. Liao, Q. Yin, and Y. Li, Mater. Res. Bull. 43, 1209 (2008).CrossRefGoogle Scholar
  23. 23.
    X. Zhang, W. D. Yan, H. F. Yang, B. Y. Liu, and P. G. Liu, J. Polym. Sci. Part A: Polym. Chem. 46, 7950 (2008).CrossRefGoogle Scholar
  24. 24.
    J. W. Fan, J. Y. Deng, C. M. Xing, and W. T. Yang, Poly. Sci. Part, A: Polym. Chem. 44, 653 (2006).CrossRefGoogle Scholar
  25. 25.
    L. X. Yuan, X. M. Wang, X. Zhang, P. G. Liu, and W. D. Yan, Chin. Chem. Lett. 21, 1493 (2010).CrossRefGoogle Scholar
  26. 26.
    B. Yang and W. T. Yang, J. Membr. Sci. 218, 247 (2003).CrossRefGoogle Scholar
  27. 27.
    C. M. Stark, C. Liotta, and M. Halpern, Phase Transfer Catalysis: Fundamentals, Applications and Industrial Perspective (Chapman and Hall, New York, 1994), ch. 3, p. 175.Google Scholar
  28. 28.
    C. N. Ji, R. J. Qu, and C. M. Sun, J. Appl. Polym. Sci. 103, 3220 (2007).CrossRefGoogle Scholar
  29. 29.
    H. R. Kang, W. Li, and Y. Shan, Chin. J. Org. Chem. (in Chinese) 10, 78 (1990).Google Scholar
  30. 30.
    S. Baj, A. Siewniak, and B. Socha, Appl. Catal. A: Gen. 309, 85 (2006).CrossRefGoogle Scholar
  31. 31.
    H. C. Hsiao and H. S. Weng, J. Chem. Technol. Biotechnol. 76, 959 (2001).CrossRefGoogle Scholar
  32. 32.
    X. Zhang, W. D Yan, H. F. Yang, B. Y. Liu, and P. G. Liu, J. Polym. Sci. Part A: Polym. Chem. 46, 7950 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Qing Qing Wang
    • 1
  • Xiao Mei Wang
    • 1
  • Lei Feng
    • 1
  • Xiao Lei Xu
    • 1
  • Xu Zhang
    • 1
  1. 1.Institute of Polymer Science and EngineeringHebei University of TechnologyTianjinChina

Personalised recommendations