Advertisement

Polymer Science Series B

, Volume 54, Issue 3–4, pp 223–233 | Cite as

Synthesis of highly branched polymers via three-dimensional radical polymerization in the presence of oxygen

  • S. A. Kurochkin
  • M. A. Silant’ev
  • E. O. Perepelitsina
  • M. P. Berezin
  • A. A. Baturina
  • V. P. Grachev
  • G. V. Korolev
Polymerization

Abstract

It is shown that branched and highly branched vinyl polymers can be prepared by three-dimensional radical polymerization in the presence of dissolved oxygen, as exemplified by the oxidative copolymerization of styrene and divinylbenzene. The conditions of synthesis of highly branched polymers with a high yield—the ratio between monovinyl and divinyl comonomers and the rate of oxygen bubbling—are determined. The kinetics of formation of branched polystyrenes and the features of their molecular-mass distribution are studied. Elemental-analysis data show that the polymeric product contains 22–24 wt % oxygen, which, according to the IR data, enters into the composition of carbonyl, hydroxyl, and peroxide groups. The thermal decomposition of polymeric products is investigated via the TGA-DSC method. The main exothermal peak at ∼145°C is associated with the decomposition of peroxide groups, which is accompanied by the evolution of formaldehyde.

Keywords

Styrene Polymer Science Series Radical Polymerization AIBN High Molecular Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Tomalia, H. Baker, J. Diwald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith, Polym. J. (Tokyo) 17, 117 (1985).CrossRefGoogle Scholar
  2. 2.
    A. M. Muzafarov and E. A. Rebrov, Polymer Science, Ser. C 42, 55 (2000) [Vysokomol. Soedin., Ser. C 42, 2015 (2000)].Google Scholar
  3. 3.
    G. V. Korolev and M. L. Bubnova, Polymer Science, Ser. C 49, 332 (2007) [Vysokomol. Soedin., Ser. C 49, 1357 (2007)].CrossRefGoogle Scholar
  4. 4.
    Y. H. Kim and O. W. Webster, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 29, 310 (1988).Google Scholar
  5. 5.
    D. Yan and C. Gao, Macromolecules 33, 7693 (2000).CrossRefGoogle Scholar
  6. 6.
    T. Emrick, H. T. Chang, and J. M. J. Frechet, Macro- molecules 32, 6380 (1999).CrossRefGoogle Scholar
  7. 7.
    J. Liu, W. Huang, Y. Pang, X. Zhu, Y. Zhou, and D. Yan, Biomacromolecules 11, 1564 (2010).CrossRefGoogle Scholar
  8. 8.
    A. M. Fischer and H. Frey, Macromolecules 43, 8539 (2010).CrossRefGoogle Scholar
  9. 9.
    J. Kong, T. Schmalz, G. Motz, and A. H. E. Muller, Macromolecules 44, 1280 (2011).Google Scholar
  10. 10.
    T. Sato, N. Sato, M. Seno, and T. Hirano, J. Polym. Sci., Part A: Polym. Chem. 41, 3038 (2003).CrossRefGoogle Scholar
  11. 11.
    N. O’Brien, A. McKee, D. C. Sherrington, A. T. Slark, and A. Titterton, Polymer 41, 6027 (2000).CrossRefGoogle Scholar
  12. 12.
    C. J. Hawker, J. M. J. Frechet, R. B. Grubbs, and J. Dao, J. Am. Chem. Soc. 117, 10763 (1995).CrossRefGoogle Scholar
  13. 13.
    C. Zhang, Y. Zhou, Q. Liu, S. Li, S. Perrier, and Y. Zhao, Macromolecules 44, 2034 (2011).CrossRefGoogle Scholar
  14. 14.
    M. L. Koh, D. Konkolewicz, and S. Perrier, Macro- molecules 44, 2715 (2011).CrossRefGoogle Scholar
  15. 15.
    F. Isaure, P. A. Cormack, and D. C. Sherrington, Macromolecules 37, 2096 (2004).CrossRefGoogle Scholar
  16. 16.
    S. Graham, P. A. Cormack, and D. C. Sherrington, Macromolecules 38, 86 (2005).CrossRefGoogle Scholar
  17. 17.
    Y. Li and S. P. Armes, Macromolecules 38, 8155 (2005).CrossRefGoogle Scholar
  18. 18.
    R. Baudry and D. C. Sherrington, Macromolecules 39, 1455 (2006).CrossRefGoogle Scholar
  19. 19.
    S. V. Kurmaz, I. S. Kochneva, V. V. Ozhiganov, A. A. Baturina, and G. A. Estrina, Zh. Prikl. Khim. (S.-Peterburg) 81, 1710 (2008).Google Scholar
  20. 20.
    M. Chisholm, N. Hudson, N. Kirtley, F. Vilela, and D. C. Sherrington, Macromolecules 42, 7745 (2009).CrossRefGoogle Scholar
  21. 21.
    S. V. Kurmaz and A. N. Pyryaev, Polymer Science, Ser. B 52, 1 (2010) [Vysokomol. Soedin., Ser. B 52, 107 (2010)].CrossRefGoogle Scholar
  22. 22.
    G. V. Korolev and A. A. Berlin, Vysokomol. Soedin. 4, 1654 (1962).Google Scholar
  23. 23.
    I. Bannister, N. C. Billingham, S. P. Armes, S. P. Ran- nard, and P. Findlay, Macromolecules 39, 7483 (2006).CrossRefGoogle Scholar
  24. 24.
    W. Wang, Y. Zheng, E. Roberts, C. J. Duxbury, L. Ding, D. J. Irvine, and S. M. Howdle, Macromolecules 40, 7184 (2007).CrossRefGoogle Scholar
  25. 25.
    J. Gao, G. Zhai, Y. Song, and B. Jiang, J. Polym. Sci., Part A: Polym. Chem. 112, 2522 (2009).Google Scholar
  26. 26.
    W. Wang, D. Wang, B. Li, and S. Zhu, Macromolecules 43, 4062 (2010).CrossRefGoogle Scholar
  27. 27.
    W. Tao and L. Yan, J. Polym. Sci., Part A: Polym. Chem. 118, 3391 (2010).Google Scholar
  28. 28.
    Y. Zheng, W. Turner, M. Zong, D. J. Irvine, S. M. Howdle, and K. J. Thurecht, Macromolecules 44, 1347 (2011).Google Scholar
  29. 29.
    V. I. Irzhak, Usp. Khim. 73, 275 (2004).Google Scholar
  30. 30.
    S. A. Kurochkin, Polymer Science, Ser. B 52, 109 (2010) [Vysokomol. Soedin., Ser. B 52, 360 (2010)].CrossRefGoogle Scholar
  31. 31.
    M. M. Mogilevich, N. A. Sukhanova, O. P. Yablonskii, and G. V. Korolev, Izv. Vyssh. Uchebn. Zaved., Khim. Tekhnol. 16, 1898 (1973).Google Scholar
  32. 32.
    E. T. Denisov and I. B. Afanas’ev, Oxidation and Antioxidants in Organic Chemistry and Biology (Taylor and Francis, Boca Raton, 2005).CrossRefGoogle Scholar
  33. 33.
    M. M. Mogilevich and E. M. Pliss, Oxidation and Oxidative Polymerization of Unsaturated Compounds (Khimiya, Moscow, 1990) [in Russian].Google Scholar
  34. 34.
    S. A. Kurochkin, V. P. Grachev, and G. V. Korolev, Polymer Science, Ser. A 50, 921 (2008) [Vysokomol. Soedin., Ser. A 50, 1589 (2008)].CrossRefGoogle Scholar
  35. 35.
    B. G. Belen’kii, Nauchn. Priborostr. 11, 3 (2001).Google Scholar
  36. 36.
    V. B. Kogan, V. M. Fridman, and V. V. Kafarov, A Handbook of Solubility (Akad. Nauk SSSR, Moscow, 1961), Vol. 1 [in Russian].Google Scholar
  37. 37.
    A. A. Miller and F. R. Mayo, J. Am. Chem. Soc. 78, 1017 (1956).CrossRefGoogle Scholar
  38. 38.
    K. Kishore, J. Chem. Eng. Data 25, 92 (1980).CrossRefGoogle Scholar
  39. 39.
    S. A. Kurochkin, V. P. Grachev, and G. V. Korolev, Polymer Science, Ser. A 49, 227 (2007) [Vysokomol. Soedin., Ser. A 49, 360 (2007)].CrossRefGoogle Scholar
  40. 40.
    K. Kishore and K. Ravindran, Macromolecules 15, 1638 (1982).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. A. Kurochkin
    • 1
  • M. A. Silant’ev
    • 1
  • E. O. Perepelitsina
    • 1
  • M. P. Berezin
    • 1
  • A. A. Baturina
    • 1
  • V. P. Grachev
    • 1
  • G. V. Korolev
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations