Polymer Science Series B

, Volume 53, Issue 5–6, pp 307–312 | Cite as

Synthesis of gradient copolymers of styrene and tert-butyl acrylate by pseudoliving radical polymerization mediated by the reversible inhibitor TEMPO

  • D. I. Kalugin
  • M. Yu. Zaremski
  • V. B. Golubev
  • E. S. Garina
Polymerization

Abstract

The gradient copolymers of styrene and tert-butyl acrylate are synthesized by pseudoliving free-radical polymerization in the presence of TEMPO. Despite the inability of tert-butyl acrylate to undergo polymerization in the presence of the nitroxide TEMPO, the introduction of styrene makes it possible to perform the process under the controlled reversible-inhibition regime. The introduction of an additional high-temperature initiator, cumene hydroperoxide, increases the yield of the copolymer, while the pseudoliving mechanism of the process is preserved. This phenomenon is confirmed by the facts that the concentration of nitroxide remains almost invariable during polymerization and that the molecular mass of the polymerization product increases with conversion. Variations in the composition of the copolymer and its molecular mass during polymerization are evidence that the gradient copolymers are formed.

Keywords

Styrene Tempo Copolymerization Polymer Science Series AIBN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Yu. Zaremski, D. I. Kalugin, and V. B. Golubev, [Polymer Science, Ser. A 51, 103 (2009) [Vysokomol. Soedin., Ser. A 51, 137 (2009)].CrossRefGoogle Scholar
  2. 2.
    K. Matyjaszewski, M. J. Ziegler, and S. V. Arehart, J. Phys. Org. Chem. 13, 775 (2000).CrossRefGoogle Scholar
  3. 3.
    M. Yu. Zaremski and V. B. Golubev, Polymer Science, Ser. C 43, 81 (2001) [Vysokomol. Soedin., Ser. C 43, 1689 (2001)].Google Scholar
  4. 4.
    T. N. T. Phan, S. Maiez-Tribut, J.-P. Pascault, and A. Bonnet, Macromolecules 40, 4516 (2007).CrossRefGoogle Scholar
  5. 5.
    M. K. Gray, H. Zhou, S. T. Nguyen, and J. M. Torkelson, Macromolecules 37, 5586 (2004).CrossRefGoogle Scholar
  6. 6.
    M. K. Gray, H. Zhou, S. T. Nguyen, and J. M. Torkelson, Polymer 45, 4777 (2004).CrossRefGoogle Scholar
  7. 7.
    J. Kim, M. M. Mok, R. W. Sandoval, et al., Macromolecules 39, 6152 (2006).CrossRefGoogle Scholar
  8. 8.
    T. N. T. Phan, S. Maiez-Tribut, J-P. Pascault, et al., Macromolecules 40, 4516 (2007).CrossRefGoogle Scholar
  9. 9.
    K. Karaky, L. Billon, C. Pouchan, and J. Desbrieres, Macromolecules 40, 458 (2007).CrossRefGoogle Scholar
  10. 10.
    Polymer Handbook, Ed. by J. Brandrup and E. H. Immergut (Wiley, New York, 1989).Google Scholar
  11. 11.
    A. Goto and T. Fukuda, Macromolecules 32, 618 (1999).CrossRefGoogle Scholar
  12. 12.
    M. Ratzsch and L. Stephan, Plaste Kautsch. 15, 792 (1968).Google Scholar
  13. 13.
    T. Fukuda, K. Kubo, and Yung-Dae Ma, Prog. Polym. Sci. 17, 875 (1992).CrossRefGoogle Scholar
  14. 14.
    A. Goto and T. Fukuda, Macromolecules 30, 4272 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • D. I. Kalugin
    • 1
  • M. Yu. Zaremski
    • 1
  • V. B. Golubev
    • 1
  • E. S. Garina
    • 1
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations