Advertisement

Polymer Science Series B

, Volume 51, Issue 1–2, pp 20–26 | Cite as

Modification of polybutadiene with caprolacton during polymerization

  • L. A. Nekhaeva
  • V. M. Frolov
  • N. A. Konovalenko
  • O. A. Khokhlova
  • V. L. Khodzhaeva
  • M. P. Filatova
  • B. F. Shklyaruk
  • E. M. Antipov
Polymerization

Abstract

Polybutadiene has been modified with ɛ-caprolacton during butadiene polymerization carried out in the presence of catalytic systems based on neodymium and organoaluminum compounds at a butadiene conversion of 90–96%. The structure, phase state, and temperature behavior of polybutadienes modified with ɛ-caprolacton have been studied by IR and 13C NMR spectroscopy, DSC, and X-ray diffraction analysis. The above approach shows promise for the synthesis of new-generation elastomers which do not rank below conventional rubbers in terms of their characteristics but possess biodegradability.

Keywords

Polymer Science Series Catalytic System Butadiene TIBA Polybutadiene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Dolgoplosk and E. I. Tinyakova, Metallocomplex Catalysis in Polymerization Processes (Nauka, Moscow, 1985) [in Russian].Google Scholar
  2. 2.
    Yu. B. Monakov and G. A. Tolstikov, Catalytic Polymerization of 1,3-Dienes (Nauka, Moscow, 1990) [in Russian].Google Scholar
  3. 3.
    Ji-Hua, M. Tsutsui, Z. Chen, and D. A. Bergbreiter, Macromolecules 15, 230 (1982).CrossRefGoogle Scholar
  4. 4.
    N. N. Chigir, O. K. Sharaev, E. I. Tinyakova, and B. A. Dolgoplosk, Vysokomol. Soedin., Ser. B 25, 47(1983).Google Scholar
  5. 5.
    M. C. Throckmorton, Kautsch. Gummi Kunstst. 22, 293 (1969).Google Scholar
  6. 6.
    Yu. B. Monakov, N. N. Sigaeva, and V. N. Urazbaev, in Active Sites of Polymerization: Multiplicity: Stereospecific and Kinetic Heterogeneity, Ed. by G. E. Zaikov (Brill Academic, Leiden, 2005).Google Scholar
  7. 7.
    V. A. Yakovlev, I. F. Gavrilenko, G. N. Bondarenko, and O. V. Chausova, Polymer Science, Ser. B 48, 203 (2006) [Vysokomol. Soedin., Ser. B 48, 1519 (2006)].CrossRefGoogle Scholar
  8. 8.
    K. L. Makovetskii, V. A. Yakovlev, T. G. Golenko, and G. N. Bondarenko, Polymer Science, Ser. B 48, 61 (2006) [Vysokomol. Soedin., Ser. B 48, 534 (2006)].CrossRefGoogle Scholar
  9. 9.
    L. A. Nekhaeva, V. M. Frolov, V. L. Khodjaeva, et al., in Proceedings of European Polymer Congress, Moscow, 2005, p. 110.Google Scholar
  10. 10.
    Z. Shen, X. Chen, Y. Shen, and Y. Zhang, J. Polym. Sci., Part A: Polym. Chem. 32, 597 (1994).CrossRefGoogle Scholar
  11. 11.
    R. Kuhn, Makromol. Chem. 177, 1525 (1976).CrossRefGoogle Scholar
  12. 12.
    R. Kuhn, Makromol. Chem. 181, 725 (1980).CrossRefGoogle Scholar
  13. 13.
    F. Danusso and G. Morgalin, J. Polym. Sci. 51, 475 (1961).CrossRefGoogle Scholar
  14. 14.
    M. M. Coleman and J. Zarian, J. Polym. Sci., Part B: Polym. Phys. 17, 837 (1979).Google Scholar
  15. 15.
    L. A. Nekhaeva, V. M. Frolov, N. A. Konovalenko, et al., Polymer Science, Ser. A 45, 311 (2003) [Vysokomol. Soedin., Ser. A 45, 540 (2003)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • L. A. Nekhaeva
    • 1
  • V. M. Frolov
  • N. A. Konovalenko
    • 2
  • O. A. Khokhlova
    • 2
  • V. L. Khodzhaeva
    • 1
  • M. P. Filatova
    • 1
  • B. F. Shklyaruk
    • 1
  • E. M. Antipov
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.OAO VoronezhsintezkauchukVoronezhRussia

Personalised recommendations