Advertisement

Polymer Science Series B

, Volume 49, Issue 1–2, pp 36–41 | Cite as

Thermal stability of polydiphenylamine synthesized through oxidative polymerization of diphenylamine

  • S. Zh. Ozkan
  • G. P. Karpacheva
  • A. V. Orlov
  • M. A. Dzyubina
Article

Abstract

The thermal stability of polydiphenylamine synthesized through the oxidative polymerization of diphenylamine has been studied. It has been established that the main processes of thermal and thermooxidative degradation of polydiphenylamine begin at 600–650 and 450°C, respectively. It has been shown that, in the course of thermal oxidation of the doped polydiphenylamine, the elimination of a dopant takes place first. With a further increase in temperature, the behavior of this material becomes similar to that of the neutral polymer.

Keywords

Polyaniline Polymer Science Series Sulfuric Acid Solution Neutral Form Oxidative Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Orlov, S. Zh. Ozkan, and G. P. Karpacheva, Polymer Science, Ser. B 48, 5 (2006) [Vysokomol. Soedin., Ser. B 48, 134 (2006)].CrossRefGoogle Scholar
  2. 2.
    A. V. Orlov, S. Zh. Ozkan, G. N. Bondarenko, and G. P. Karpacheva, Polymer Science, Ser. B 48, 1 (2006) [Vysokomol. Soedin., Ser. B 48, 126 (2006)].Google Scholar
  3. 3.
    K.-U. Bühler, Spezialplaste (Akademie, Berlin, 1978; Khimiya, Moscow, 1984).Google Scholar
  4. 4.
    S. Zh. Ozkan, Candidate’s Dissertation in Chemistry (Moscow, 2006).Google Scholar
  5. 5.
    R. Willstatter and S. Dorogi, Chem. Ber. 42, 2147 (1909).CrossRefGoogle Scholar
  6. 6.
    V. P. Parini, Z. S. Kazakova, and A. A. Berlin, Vysokomol. Soedin. 3, 1870 (1961).Google Scholar
  7. 7.
    E. M. Scherr, A. G. MacDiarmid, S. K. Manohar, et al., Synth. Met. 41, 735 (1991).CrossRefGoogle Scholar
  8. 8.
    L. Ding, X. Wang, and R. V. Gregory, Synth. Met. 104, 73 (1999).CrossRefGoogle Scholar
  9. 9.
    X.-H. Wang, Y.-H. Geng, L.-X. Wang, et al., Synth. Met. 69, 263 (1995).CrossRefGoogle Scholar
  10. 10.
    J. Yue, A. J. Epstein, Z. Zhong, et al., Synth. Met. 41, 765 (1991).CrossRefGoogle Scholar
  11. 11.
    V. G. Kulkarni, L. D. Campbell, and W. R. Mathew, Synth. Met. 30, 321 (1989).CrossRefGoogle Scholar
  12. 12.
    T.-Ch. Wen, J.-B. Chen, and A. Gopalan, Mater. Lett. 57, 280 (2002).CrossRefGoogle Scholar
  13. 13.
    J.-C. LaCroix and A. F. Diaz, J. Electrochem. Soc., No. 6, 1457 (1988).Google Scholar
  14. 14.
    S. Chen and L. Lin, Macromolecules 28, 1239 (1995).CrossRefGoogle Scholar
  15. 15.
    S. Chen and H. Lee, Macromolecules 28, 3254 (1993).CrossRefGoogle Scholar
  16. 16.
    Y. Wei, G.-W. Jang, K. F. Hsueh, et al., Polymer 33, 314 (1992).CrossRefGoogle Scholar
  17. 17.
    A. Boyle, J. F. Penneau, E. Genies, and C. Riekel, J. Polym. Sci., Part B: Polym. Phys. 30, 265 (1992).CrossRefGoogle Scholar
  18. 18.
    Y. Wei and K. F. Hsueh, J. Polym. Sci., Part A: Polym. Chem. 27, 4351 (1989).CrossRefGoogle Scholar
  19. 19.
    K. Amano, H. Ishikawa, A. Kobayashi, et al., Synth. Met. 62, 229 (1994).CrossRefGoogle Scholar
  20. 20.
    X.-H. Wang, Y.-H. Geng, L.-X. Wang, et al., Synth. Met. 69, 265 (1995).CrossRefGoogle Scholar
  21. 21.
    N. Chandrakanthi and M. A. Careem, Polym. Bull. (Berlin) 44, 101 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • S. Zh. Ozkan
    • 1
  • G. P. Karpacheva
    • 1
  • A. V. Orlov
    • 1
  • M. A. Dzyubina
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisMoscowRussia

Personalised recommendations