Advertisement

Polymer Science Series B

, Volume 48, Issue 5, pp 229–232 | Cite as

Crystallization of oxidized isotactic polypropylene

  • Yu. V. Myasnikova
  • A. A. Popov
  • L. S. Shibryaeva
Article

Abstract

The effect of processes accompanying thermal oxidation of the polymer on the characteristics of its isothermal crystallization has been revealed. It has been shown that crystallization decelerates with a rise in the degree of PP oxidation. The higher the concentration of functional groups, the stronger the deceleration. The energy of nucleation increases when passing from virgin to oxidized PP samples. The higher the concentration of carbonyl groups accumulated in polymer chains, the more pronounced this effect, although the degradation of the chains must lead to a reduction in this parameter. It has been concluded that the kinetic and thermodynamic parameters of the isothermal crystallization are applicable to investigation of processes accompanying thermal oxidation of the crystallizable polymer.

Keywords

Crystallization Polymer Science Series Thermal Oxidation Isothermal Crystallization Oxidation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. I. Lauritzen, Jr. and J. D. Hoffman, J. Chem. Phys. 31, 1680 (1959).CrossRefGoogle Scholar
  2. 2.
    J. I. Lauritzen, Jr. and E. Passaglia, J. Res. Nat. Bur. Stand., Sect. A 71, 261 (1967).Google Scholar
  3. 3.
    J. D. Hoffman, J. I. Lauritzen, Jr., and E. Passaglia, Kolloid Z. Z. Polym. 231, 564 (1969).CrossRefGoogle Scholar
  4. 4.
    B. Wunderlich, Macromolecular Physics (Academic, New York, 1976; Mir, Moscow, 1979).Google Scholar
  5. 5.
    R. A. Gasparyan and S. Ya. Frenkel’, Polymer Science, Ser. A 39, 558 (1997) [Vysokomol. Soedin., Ser. A 39, 832 (1997)].Google Scholar
  6. 6.
    R. A. Gasparyan, M. A. Martynov, A. M. Ovsipyan, and S. Ya. Frenkel’, Polymer Science, Ser. B 42, @ (2000) [Vysokomol. Soedin., Ser. B 42, 2166 (2000)].Google Scholar
  7. 7.
    K. A. Gasparyan, R. A. Gasparyan, M. A. Martynov, and S. Ya. Frenkel’, Vysokomol. Soedin., Ser. B 30, 465 (1988).Google Scholar
  8. 8.
    R. A. Gasparyan, K. A. Gasparyan, V. G. Baranov, et al., Vysokomol. Soedin., Ser. B 30, 896 (1988).Google Scholar
  9. 9.
    R. A. Gasparyan, K. A. Gasparyan, M. A. Martynov, and S. Ya. Frenkel’, Vysokomol. Soedin., Ser. B 31, 391 (1989).Google Scholar
  10. 10.
    R. P. Wool, Polym. Eng. Sci. 2, 805 (1980).CrossRefGoogle Scholar
  11. 11.
    Yu. K. Godovskii, Thermophysical Methods for Polymer Investigation (Khimiya, Moscow, 1982) [in Russian].Google Scholar
  12. 12.
    Y. V. Kissin, J. Polym. Sci., Part A-2 21, 2085 (1983).Google Scholar
  13. 13.
    Y. V. Kissin, Isospecific Polymerization of Olefins (Springer, New York, 1985).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • Yu. V. Myasnikova
    • 1
  • A. A. Popov
    • 1
  • L. S. Shibryaeva
    • 1
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations