Polymer Science Series B

, Volume 48, Issue 4, pp 173–176 | Cite as

The Grüneisen parameter and Poisson coefficient for glassy organic polymers and inorganic glasses

  • B. D. Sanditov
  • Sh. B. Tsydypov
  • D. S. Sanditov
  • V. V. Mantatov


The Grüneisen lattice parameter has been calculated from the data on the Poisson coefficient for amorphous polymers and glasses. For glassy polymers, the thermodynamic Grüneisen parameter characterizes anharmonicity averaged over intrachain and other vibrational modes, the Grüneisen lattice parameter defines anharmonicity of interchain interactions provided by intermolecular interactions. In the case of alkali silicate glasses, the Grüneisen lattice parameter reflects the anharmonicity of vibrations of ionic sublattice that is formed by alkali-metal ions and nonbridging oxygen atoms.


PMMA Polymer Science Series HDPE LDPE Amorphous Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Belomestnykh and E. P. Tesleva, Zh. Tekh. Fiz. 74(8), 140 (2004).Google Scholar
  2. 2.
    Yu. K. Godovsky, Thermal Physics of Polymers (Khimiya, Moscow, 1982) [in Russian].Google Scholar
  3. 3.
    B. D. Sanditov and V. V. Mantatov, Nonlinear Forces of Intermolecular Interaction in Noncrystalline Solids (Buryat. Gos. Univ., Ulan-Ude, 2001) [in Russian].Google Scholar
  4. 4.
    G. V. Kozlov and D. S. Sanditov, Anharmonic Effects and Mechanical Properties of Polymers (Nauka, Novosibirsk, 1994) [in Russian].Google Scholar
  5. 5.
    R. W. Warfield, Makromol. Chem. 175, 3285 (1974).CrossRefGoogle Scholar
  6. 6.
    D. S. Sanditov and V. V. Mantatov, Fiz. Khim. Stekla 9, 287 (1983).Google Scholar
  7. 7.
    D. S. Sanditov and V. V. Mantatov, Fiz. Khim. Stekla 15, 699 (1989).Google Scholar
  8. 8.
    D. W. Van Krevelen, Properties of Polymers. Correlation with Chemical Structure (Elsevier, Amsterdam, 1972; Khimiya, Moscow, 1976).Google Scholar
  9. 9.
    M. Coenen, Glastech. Ber. 50(4), 74 (1977).Google Scholar
  10. 10.
    O. V. Mazurin, M. V. Strel’tsina, and T. P. Shvaiko-Shvaikovskaya, Properties of Glasses and Glass-Forming Melts. A Handbook (Nauka, Leningrad, 1973), Vol. 1 [in Russian].Google Scholar
  11. 11.
    D. S. Sanditov and G. M. Bartenev, Physical Properties of Disordered Structures (Nauka, Novosibirsk, 1982) [in Russian].Google Scholar
  12. 12.
    D. S. Sanditov and V. V. Mantatov, Vysokomol. Soedin., Ser. B 31, 869 (1990).Google Scholar
  13. 13.
    D. S. Sanditov and V. V. Mantatov, Fiz. Khim. Stekla 17, 174 (1991).Google Scholar
  14. 14.
    D. S. Sanditov, Vysokomol. Soedin., Ser. A 47, 478 (2005) [Polymer Science, Ser. A 47, 289 (2005)].Google Scholar
  15. 15.
    D. S. Sanditov, Dokl. Akad. Nauk 390, 209 (2003).Google Scholar
  16. 16.
    D. S. Sanditov, Dokl. Akad. Nauk 403, 498 (2005).Google Scholar
  17. 17.
    Y. Wada, A. Itani, T. Nishi, and S. Nagai, J. Polym. Sci., Part A-2 7, 201 (1969).CrossRefGoogle Scholar
  18. 18.
    S. V. Nemilov, Dokl. Akad. Nauk SSSR 181, 1427 (1968).Google Scholar
  19. 19.
    K. L. Leont’ev, Akust. Zh. 47, 554 (1981).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • B. D. Sanditov
    • 1
  • Sh. B. Tsydypov
    • 2
  • D. S. Sanditov
    • 1
  • V. V. Mantatov
    • 1
  1. 1.Buryat State UniversityUlan-UdeRussia
  2. 2.Buryat Scientific Center, Siberian DivisionRussian Academy of SciencesUlan-UdeRussia

Personalised recommendations