Advertisement

Polymer Science Series B

, Volume 48, Issue 1, pp 5–10 | Cite as

Oxidative polymerization of diphenylamine: Synthesis and structure of polymers

  • A. V. Orlov
  • S. Zh. Ozkan
  • G. N. Bondarenko
  • G. P. Karpacheva
Article

Abstract

Three procedures for the chemical oxidative polymerization of diphenylamine, namely, in solutions of sulfuric acid, in an H2SO4-tert-butanol mixture, and via the interfacial process, are considered. It was shown that the highest molecular mass products are formed by the interfacial process. Oxidative hydrolysis and chain termination reactions predominate in a homogeneous medium. The effects of polymerization conditions, such as the concentration of reagents, their ratio, and the reaction temperature, on the yield and molecular-mass characteristics of polydiphenylamine were studied. The structure of reaction products was investigated by UV spectroscopy. It was demonstrated that, even when ammonium persulfate is in excess, the degree of oxidation of polydiphenylamine is rather small and chain propagation proceeds as a C-C rather than N-C addition as in the case of aniline.

Keywords

Polyaniline Aniline Polymer Science Series Ammonium Persulfate Oxidative Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Malinauskas, Polymer 42, 3957 (2001).CrossRefGoogle Scholar
  2. 2.
    A. G. McDiarmid, Synth. Met. 125, 11 (2002).CrossRefGoogle Scholar
  3. 3.
    C. R. Martin, Chem. Mater. 8, 1739 (1996).CrossRefGoogle Scholar
  4. 4.
    M. Delvaux, J. Duchet, P.-Y. Stavaux, et al., Synth. Met. 113, 275 (2000).CrossRefGoogle Scholar
  5. 5.
    Q. Wu, Z. Xue, Z. Qi, and F. Wang, Polymer 41, 2029 (2000).CrossRefGoogle Scholar
  6. 6.
    M. Kryszewski, Synth. Met. 109, 47 (2000).CrossRefGoogle Scholar
  7. 7.
    A. V. Orlov, S. G. Kiseleva, G. P. Karpacheva, et al., J. Polym. Sci. 89, 1379 (2003).Google Scholar
  8. 8.
    A. V. Orlov, O. Yu. Yurchenko, S. G. Kiseleva, et al., Vysokomol. Soedin., Ser. A 43, 890 (2001) [Polymer Science, Ser. A 43, 572 (2001)].Google Scholar
  9. 9.
    T.-C. Wen, C. Sivakumar, and A. Gopalan, Spectrochim. Acta, Part A 58, 167 (2002).CrossRefGoogle Scholar
  10. 10.
    P. A. Kilmartin and G. A. Wright, Synth. Met. 104, 145 (1999).CrossRefGoogle Scholar
  11. 11.
    L. H. C. Mattoso, L. G. Paterno, S. P. Campana, and O. N. Oliveria, Jr., Synth. Met. 84, 123 (1997).CrossRefGoogle Scholar
  12. 12.
    L. H. C. Mattoso and L. O. S. Bulhoes, Synth. Met. 52, 171 (1992).CrossRefGoogle Scholar
  13. 13.
    A. H. Kwon, J. A. Conklin, M. Makhinson, and R. B. Kaner, Synth. Met. 84, 95 (1997).CrossRefGoogle Scholar
  14. 14.
    X.-H. Wang, L.-X. Wang, X.-B. Jing, and F.-S. Wang, Synth. Met. 69, 149 (1995).CrossRefGoogle Scholar
  15. 15.
    X.-H. Wang, J. Li, L.-X. Wang, et al., Synth. Met. 69, 147 (1995).CrossRefGoogle Scholar
  16. 16.
    E. V. Strounina, A. P. Leon, and G. G. Kane-Maguire, Synth. Met. 106, 129 (1999).CrossRefGoogle Scholar
  17. 17.
    H. S. O. Chan, S. C. Ng, L. S. Leong, and K. L. Tan, Synth. Met. 68, 199 (1995).CrossRefGoogle Scholar
  18. 18.
    F. Cataldo, Eur. Polym. J. 32, 43 (1996).CrossRefGoogle Scholar
  19. 19.
    D. Goncalves, R. C. Faria, M. Yonashiro, and L. O. S. Bulhoes, J. Electroanal. Chem. 487, 90 (2000).CrossRefGoogle Scholar
  20. 20.
    U. Hayat, P. N. Bartlett, G. H. Dodd, and J. Barker, J. Electroanal. Chem. 220, 287 (1987).CrossRefGoogle Scholar
  21. 21.
    J. Guay and H. Dao Le, J. Electroanal. Chem. 274, 135 (1989).CrossRefGoogle Scholar
  22. 22.
    Yu. V. Karyakin and I. I. Angelov, Pure Chemicals (Khimiya, Moscow, 1974) [in Russian].Google Scholar
  23. 23.
    A. Weissberger, E. Proskauer, T. Riddick, and E. Toops, Organic Solvents. Physical Properties and Methods of Purification (Wiley, New York, 1955; Inostrannaya Literatura, Moscow, 1958).Google Scholar
  24. 24.
    B. D. Berezin and D. B. Berezin, Modern Organic Chemistry: A Manual for Institutes (Vysshaya Shkola, Moscow, 1999) [in Russian].Google Scholar
  25. 25.
    F. Lux, Polymer 35, 2915 (1994).CrossRefGoogle Scholar
  26. 26.
    P. N. Adams, P. J. Laughlin, A. P. Monkman, and A. M. Kenwright, Polymer 37, 3411 (1996).CrossRefGoogle Scholar
  27. 27.
    P. N. Adams, P. J. Laughlin, and A. P. Monkman, Synth. Met. 76, 157 (1996).CrossRefGoogle Scholar
  28. 28.
    J. Stejskal, A. Riede, D. Hlavata, et al., Synth. Met. 96, 55 (1998).CrossRefGoogle Scholar
  29. 29.
    P. N. Adams and A. P. Monkman, Synth. Met. 87, 165 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. V. Orlov
    • 1
  • S. Zh. Ozkan
    • 1
  • G. N. Bondarenko
    • 1
  • G. P. Karpacheva
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations