Physics of Particles and Nuclei Letters

, Volume 14, Issue 4, pp 631–643 | Cite as

A closed expression for the UV-divergent parts of one-loop tensor integrals in dimensional regularization

Computer Technologies in Physics
  • 14 Downloads

Abstract

Starting from the general definition of a one-loop tensor N-point function, we use its Feynman parametrization to calculate the ultraviolet (UV-)divergent part of an arbitrary tensor coefficient in the framework of dimensional regularization. In contrast to existing recursion schemes, we are able to present a general analytic result in closed form that enables direct determination of the UV-divergent part of any one-loop tensor N-point coefficient independent from UV-divergent parts of other one-loop tensor N-point coefficients. Simplified formulas and explicit expressions are presented for A-, B-, C-, D-, E-, and F-functions.

Keywords

quantum field theory high energy physics phenomenology dimensional regularization tensor integrals ultraviolet divergences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. H. Ryder, Quantum Field Theory (Cambridge Univ. Press, Cambridge, 1996).CrossRefMATHGoogle Scholar
  2. 2.
    M. E. Peskin and D. V. Schroder, An Introduction to Quantum Field Theory (Perseus Books, Cambridge, MA, 1995).Google Scholar
  3. 3.
    G.’t Hooft and M. J. G. Veltman, Nucl. Phys. B 153, 365 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    G. Passarino and M. Veltman, Nucl. Phys. B 160, 151 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    A. Denner, Fortsch. Phys. 41, 307 (1993).ADSGoogle Scholar
  6. 6.
    L. M. Brown and R. P. Feynman, Phys. Rev. 85, 231 (1952).ADSCrossRefGoogle Scholar
  7. 7.
    A. Denner and S. Dittmaier, Nucl. Phys. B 734, 62 (2006); arXiv:hep-ph/0509141.ADSCrossRefGoogle Scholar
  8. 8.
    G. ‘t Hooft and M. J. G. Veltman, Nucl. Phys. B 44, 189 (1972).ADSCrossRefGoogle Scholar
  9. 9.
    C. G. Bollini and J. J. Giambiagi, Phys. Lett. B 40, 566 (1972).ADSCrossRefGoogle Scholar
  10. 10.
    J. F. Ashmore, Lett. Nuovo Cim. 4, 289 (1972).CrossRefGoogle Scholar
  11. 11.
    J. Collins, Renormalization (Cambridge Univ. Press, Cambridge, 1984).CrossRefMATHGoogle Scholar
  12. 12.
    M. Böhm, A. Denner, and H. Joos, Gauge Theory of the Strong and Electroweak Interaction (Teubner, Stuttgart, 2001).CrossRefMATHGoogle Scholar
  13. 13.
    A. Denner and S. Dittmaier, Nucl. Phys. B 658, 175 (2003); arXiv:hep-ph/0212259.ADSCrossRefGoogle Scholar
  14. 14.
    Feng Feng, Comput. Phys. Commun. 183, 1519–1524 (2012).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Patel Hiren, Comput. Phys. Commun. 197, 276–290 (2015).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    D. B. Melrose, Nuovo Cim. A 40, 181 (1965).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Atomic and Subatomic PhysicsVienna University of TechnologyViennaAustria

Personalised recommendations