Skip to main content
Log in

Forecasting the daily electricity consumption in the Moscow region using artificial neural networks

  • Computer Technologies in Physics
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

In [1] we demonstrated the possibility in principle for short-term forecasting of daily volumes of passenger traffic in the Moscow metro with the help of artificial neural networks. During training and predicting, a set of the factors that affect the daily passenger traffic in the subway is passed to the input of the neural network. One of these factors is the daily power consumption in the Moscow region. Therefore, to predict the volume of the passenger traffic in the subway, we must first to solve the problem of forecasting the daily energy consumption in the Moscow region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Ivanov and E. S. Osetrov, “Forecasting of passenger traffic in Moscow metro applying artificial neural networks,” Vestn. MIFI 5, 65–74 (2016).

    Google Scholar 

  2. V. V. Ivanov and E. S. Osetrov, “Forecasting of the Moscow metro passenger traffic applying artificial neural networks with preliminary filtering analyzed data,” Vestn. MIFI 5, 162–169 (2016).

    Google Scholar 

  3. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. (Prentice Hall, Upper Saddle River, NJ, 1999).

    MATH  Google Scholar 

  4. B. Denby, “Tutorial on neural networks applications in high energy physics: 1982 perspective,” in New Computing Techniques in Physics Research II, Proceedings of the 2nd International Workshop on Software Engineering, Artifical Intelligence and Expert System in High Energy Physics, La Londe-les-Maures, France, Jan. 13–18, 1992, Ed. by D. Perret-Gallix (World Scientific, 1992), p. 287.

    Google Scholar 

  5. S. F. Fogelman, “Neural networks for patterns recognition: introduction and comparison to other techniques,” in New Computing Techniques in Physics Research II, Proceedings of the 2nd International Workshop on Software Engineering, Artifical Intelligence and Expert System in High Energy Physics, La Londe-les- Maures, France, Jan. 13–18, 1992, Ed. by D. Perret-Gallix (World Scientific, 1992), p. 277.

    Google Scholar 

  6. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations, Ed. by D. E. Rumelhart and J. L. McClelland (MIT Press, Cambridge, MA, 1986).

    Google Scholar 

  7. N. E. Golyandina, V. V. Nekrutkin, and K. A. Braulov, Caterpillar-SSA Method: Time Series Analysis. Gistat Group. http://www.gistatgroup.com/gus/.

  8. G. Cybenko, “Approximation by superposition of a sigmoidal function,” Math. Control Signals Syst. 2, 303 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Peterson, Th. Rögnvaldsson, and L. Lönnblad, “JETNET 3.0 - a versatile artificial neural network package,” Comput. Phys. Commun. 81, 185 (1994).

    Article  ADS  Google Scholar 

  10. A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, and H. Voss, “TMVA 4.2.0–toolkit for multivariate data analysis with ROOT,” arXiv:physics/ 0703039; TMVA version 4.2.0, CERN-OPEN-2007-007 (2013). http://tmva.sourceforge.net.

    Google Scholar 

  11. R. Brun and F. Rademakers, “ROOT - an object oriented data analysis framework,” Nucl. Instrum. Methods Phys. Res. A 389, 81 (1997).

    Article  ADS  Google Scholar 

  12. S. Lahmiri, “A comparative study of backpropagation alogorithms in financial prediction,” Int. J. Comput. Sci., Eng. Appl. 1 (4), 15–21 (2011).

    Google Scholar 

  13. C. K. Chui, An Introduction to Wavelets (Academic, New York, 1992), pp. 1–18.

    MATH  Google Scholar 

  14. S. Mallat, A Wavelet Tour of Signal Processing (Academic, New York, 1999).

    MATH  Google Scholar 

  15. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipies in C: The Art of Scientific Computing, 2nd ed. (Cambridge Univ. Press, Cambridge, 1988, 1992).

    MATH  Google Scholar 

  16. I. Daubechies, Wavelets (SIAM, Philadelphia, 1992).

  17. I. Antoniou, V. V. Ivanov, Val. V. Ivanov, and P. V. Zrelov, “Wavelet filtering of network traffic measurements,” JINR Commun. E11-2002-223 (Joint Inst. Nucl. Res., Dubna, Russia,2002); Physica A 324, 733–753 (2003).

    MATH  Google Scholar 

  18. D. S. Broomhead and G. P. King, “Time-series analysis,” Proc. R. Soc. London 423, 103–110 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. D. S. Broomhead and G. P. King, “Extracting qualitative dynamics from experimental data,” Physica D 20, 217 (1986).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A. M. Albano, J. Muench, C. Schwartz, A. I. Mees, and P. E. Rapp, “Singular value decomposition and the Grassberger procaccia algorithm,” Phys. Rev. A 38, 3017 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  21. W. T. Eadie, D. Dryard, F. E. James, M. Roos, and B. Sadoulet, Statistical Methods in Experimental Physics (North-Holland, Amsterdam, London, 1971).

    MATH  Google Scholar 

  22. F. James and M. Roos, “MINUIT–function minimization and error analysis,” CERN Program Library D506 (CERN, 1988).

    Google Scholar 

  23. R. Brun, O. Couet, C. Vandoni, and P. Zanarini, “PAW–physics analysis workstation,” CERN Program Library Q121 (CERN, 1989).

    Google Scholar 

  24. D. L. Danilov and A. A. Zhiglyavskii, Main Components of Time Series: Caterpillar Method (SPb. Gos. Univ., St. Petersburg, 1997) [in Russian].

    Google Scholar 

  25. N. Golyandina, V. Nekrutkin, and A. Zhigljavsky, Analysis of Time Series Structure: SSA and Related Techniques (Chapman Hall, CRC, Boca Raton, FL, 2001).

    Book  MATH  Google Scholar 

  26. www.gistatgroup.com/cat/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ivanov.

Additional information

Original Russian Text © V.V. Ivanov, A.V. Kryanev, E.S. Osetrov, 2017, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, V.V., Kryanev, A.V. & Osetrov, E.S. Forecasting the daily electricity consumption in the Moscow region using artificial neural networks. Phys. Part. Nuclei Lett. 14, 647–657 (2017). https://doi.org/10.1134/S1547477117040112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477117040112

Navigation