Advertisement

Physics of Particles and Nuclei Letters

, Volume 14, Issue 4, pp 647–657 | Cite as

Forecasting the daily electricity consumption in the Moscow region using artificial neural networks

  • V. V. Ivanov
  • A. V. Kryanev
  • E. S. Osetrov
Computer Technologies in Physics

Abstract

In [1] we demonstrated the possibility in principle for short-term forecasting of daily volumes of passenger traffic in the Moscow metro with the help of artificial neural networks. During training and predicting, a set of the factors that affect the daily passenger traffic in the subway is passed to the input of the neural network. One of these factors is the daily power consumption in the Moscow region. Therefore, to predict the volume of the passenger traffic in the subway, we must first to solve the problem of forecasting the daily energy consumption in the Moscow region.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Ivanov and E. S. Osetrov, “Forecasting of passenger traffic in Moscow metro applying artificial neural networks,” Vestn. MIFI 5, 65–74 (2016).Google Scholar
  2. 2.
    V. V. Ivanov and E. S. Osetrov, “Forecasting of the Moscow metro passenger traffic applying artificial neural networks with preliminary filtering analyzed data,” Vestn. MIFI 5, 162–169 (2016).Google Scholar
  3. 3.
    S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. (Prentice Hall, Upper Saddle River, NJ, 1999).MATHGoogle Scholar
  4. 4.
    B. Denby, “Tutorial on neural networks applications in high energy physics: 1982 perspective,” in New Computing Techniques in Physics Research II, Proceedings of the 2nd International Workshop on Software Engineering, Artifical Intelligence and Expert System in High Energy Physics, La Londe-les-Maures, France, Jan. 13–18, 1992, Ed. by D. Perret-Gallix (World Scientific, 1992), p. 287.Google Scholar
  5. 5.
    S. F. Fogelman, “Neural networks for patterns recognition: introduction and comparison to other techniques,” in New Computing Techniques in Physics Research II, Proceedings of the 2nd International Workshop on Software Engineering, Artifical Intelligence and Expert System in High Energy Physics, La Londe-les- Maures, France, Jan. 13–18, 1992, Ed. by D. Perret-Gallix (World Scientific, 1992), p. 277.Google Scholar
  6. 6.
    D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations, Ed. by D. E. Rumelhart and J. L. McClelland (MIT Press, Cambridge, MA, 1986).Google Scholar
  7. 7.
    N. E. Golyandina, V. V. Nekrutkin, and K. A. Braulov, Caterpillar-SSA Method: Time Series Analysis. Gistat Group. http://www.gistatgroup.com/gus/.Google Scholar
  8. 8.
    G. Cybenko, “Approximation by superposition of a sigmoidal function,” Math. Control Signals Syst. 2, 303 (1989).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    C. Peterson, Th. Rögnvaldsson, and L. Lönnblad, “JETNET 3.0 - a versatile artificial neural network package,” Comput. Phys. Commun. 81, 185 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, and H. Voss, “TMVA 4.2.0–toolkit for multivariate data analysis with ROOT,” arXiv:physics/ 0703039; TMVA version 4.2.0, CERN-OPEN-2007-007 (2013). http://tmva.sourceforge.net.Google Scholar
  11. 11.
    R. Brun and F. Rademakers, “ROOT - an object oriented data analysis framework,” Nucl. Instrum. Methods Phys. Res. A 389, 81 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    S. Lahmiri, “A comparative study of backpropagation alogorithms in financial prediction,” Int. J. Comput. Sci., Eng. Appl. 1 (4), 15–21 (2011).Google Scholar
  13. 13.
    C. K. Chui, An Introduction to Wavelets (Academic, New York, 1992), pp. 1–18.MATHGoogle Scholar
  14. 14.
    S. Mallat, A Wavelet Tour of Signal Processing (Academic, New York, 1999).MATHGoogle Scholar
  15. 15.
    W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipies in C: The Art of Scientific Computing, 2nd ed. (Cambridge Univ. Press, Cambridge, 1988, 1992).MATHGoogle Scholar
  16. 16.
    I. Daubechies, Wavelets (SIAM, Philadelphia, 1992).Google Scholar
  17. 17.
    I. Antoniou, V. V. Ivanov, Val. V. Ivanov, and P. V. Zrelov, “Wavelet filtering of network traffic measurements,” JINR Commun. E11-2002-223 (Joint Inst. Nucl. Res., Dubna, Russia,2002); Physica A 324, 733–753 (2003).MATHGoogle Scholar
  18. 18.
    D. S. Broomhead and G. P. King, “Time-series analysis,” Proc. R. Soc. London 423, 103–110 (1989).ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    D. S. Broomhead and G. P. King, “Extracting qualitative dynamics from experimental data,” Physica D 20, 217 (1986).ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    A. M. Albano, J. Muench, C. Schwartz, A. I. Mees, and P. E. Rapp, “Singular value decomposition and the Grassberger procaccia algorithm,” Phys. Rev. A 38, 3017 (1988).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    W. T. Eadie, D. Dryard, F. E. James, M. Roos, and B. Sadoulet, Statistical Methods in Experimental Physics (North-Holland, Amsterdam, London, 1971).MATHGoogle Scholar
  22. 22.
    F. James and M. Roos, “MINUIT–function minimization and error analysis,” CERN Program Library D506 (CERN, 1988).Google Scholar
  23. 23.
    R. Brun, O. Couet, C. Vandoni, and P. Zanarini, “PAW–physics analysis workstation,” CERN Program Library Q121 (CERN, 1989).Google Scholar
  24. 24.
    D. L. Danilov and A. A. Zhiglyavskii, Main Components of Time Series: Caterpillar Method (SPb. Gos. Univ., St. Petersburg, 1997) [in Russian].Google Scholar
  25. 25.
    N. Golyandina, V. Nekrutkin, and A. Zhigljavsky, Analysis of Time Series Structure: SSA and Related Techniques (Chapman Hall, CRC, Boca Raton, FL, 2001).CrossRefMATHGoogle Scholar
  26. 26.
    www.gistatgroup.com/cat/.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Ivanov
    • 1
    • 2
  • A. V. Kryanev
    • 1
    • 2
  • E. S. Osetrov
    • 1
    • 3
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.National Research Nuclear University “MEPhI”MoscowRussia
  3. 3.Federal Treasury Institution “Rostransmodernizatsiya”MoscowRussia

Personalised recommendations