Advertisement

Physics of Particles and Nuclei Letters

, Volume 14, Issue 4, pp 539–549 | Cite as

Cosmological constraints on the graviton mass in RTG

Physics of Elementary Particles and Atomic Nuclei. Theory

Abstract

The Friedmann cosmological scenario in RTG (without inflation) is considered. The joint maximum-likelihood analysis of data on type Ia supernovae, the shift parameter of microwave radiation, and baryon acoustic oscillations from the Sloan catalogue of red galaxies provided tight fit constraints on the graviton mass and the space curvature in GR. It is demonstrated that the confidence interval for the graviton mass extends indefinitely if the quintessence parameter tends to zero. These conclusions are valid if the present scale factor a 0 >(2)−1/6= 0.89. At a 0 <(2)−1/6, a tight constraint on the graviton mass was derived from these observational data: m < 10–83 g. This implies that terms with the graviton mass may be neglected (with the exception of solutions of the black-hole type) in the gravitational field equations in a broad range of redshifts (0 < z < 1015).

Keywords

massive graviton Friedmann solution fitting observations cosmological scenario 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Logunov, M. A. Mestvirishvili, and Yu. V. Chugreev, Graviton Mass and Evolution of a Friedmann Universe (Mosk. Gos. Univ., Moscow, 1987) [in Russian]MATHGoogle Scholar
  2. 1a.
    A. A. Logunov, M. A. Mestvirishvili, and Yu. V. Chugreev, “Graviton mass and evolution of a friedmann universe,” Sov. J. Theor. Math. Phys. 74, 1 (1987).CrossRefMATHGoogle Scholar
  3. 2.
    Yu. V. Chugreev, “Mach’s principle for cosmological solutions in relativistic theory of gravity,” Phys. Part. Nucl. Lett. 12, 195 (2015).CrossRefGoogle Scholar
  4. 3.
    M. A. Mestvirishvili and Yu. V. Chugreev, “Friedmann model of evolution of the Universe in the relativistic theory of gravitation,” Theor. Math. Phys. 80, 886–891 (1989).CrossRefMATHGoogle Scholar
  5. 4.
    A. A. Logunov, Relativistic Theory of Gravity, Horizons in World Physics (Nauka, Moscow, 2012; Nova Science, New York, 1999).Google Scholar
  6. 5.
    Yu. V. Chugreev, “Cosmological consequences of the relativistic theory of gravitation with massive gravitons,” Theor. Math. Phys. 79, 554–558 (1989).MathSciNetCrossRefMATHGoogle Scholar
  7. 6.
    P. V. Karabut and Yu. V. Chugreev, “Conditions under which the exterior spherically symmetric solution to the equations of the relativistic theory of gravitation is physical,” Theor. Math. Phys. 84, 1006 (1990).CrossRefMATHGoogle Scholar
  8. 7.
    Yu. V. Chugreev, “Relativistic collapse of dust ball the in relativistic theory of gravitation,” Sov. J. Part. Nucl. 21, 298 (1990).Google Scholar
  9. 8.
    Yu. V. Chugreev, “Causality principle in the relativistic theory of gravitation,” Theor. Math. Phys. 88, 997–1002 (1991).MathSciNetCrossRefGoogle Scholar
  10. 9.
    E. Yu. Emel’yanov and Yu. V. Chugreev, “Evolution of Friedmann Universe in the relativistic theory of gravitation based on spaces of constant curvature,” Theor. Math. Phys. 97, 1409–1420 (1993).MathSciNetCrossRefMATHGoogle Scholar
  11. 10.
    S. S. Gershtein, A. A. Logunov, M. A. Mestvirishvili, and N. P. Tkachenko, “Graviton mass, quintessence, and oscillatory character of Universe evolution,” Phys. At. Nucl. 67, 1596 (2004)).CrossRefGoogle Scholar
  12. 11.
    Yu. V. Chugreev, “Is the causality principle violated for gravitational waves? Theor. Math. Phys. 138, 293–296 (2004).Google Scholar
  13. 12.
    S. S. Gershtein, A. A. Logunov, and M. A. Mestvirishvili, “Cosmological constant and Minkowski space,” Phys. Part. Nucl. 38, 291 (2007).CrossRefGoogle Scholar
  14. 13.
    Yu. V. Chugreev, “The vacuum cosmological solution is unique in the relativistic theory of gravity,” Theor. Math. Phys. 161, 1420 (2009).MathSciNetCrossRefMATHGoogle Scholar
  15. 14.
    V. Mukhanov, Physical Foundations of Cosmology (Cambridge Univ. Press, Cambridge, 2005).CrossRefMATHGoogle Scholar
  16. 15.
    S. S. Gershtein, A. A. Logunov, and M. A. Mestvirishvili, “Graviton mass and the total relative mass density Ωtot in the Universe,” Dokl. Phys. 48, 282 (2003).ADSCrossRefMATHGoogle Scholar
  17. 16.
    S. S. Gershtein, A. A. Logunov, M. A. Mestvirishvili, and N. P. Tkachenko, “Evolution of the Universe in the field theory of gravitation,” Phys. Part. Nucl. 36, 529 (2005).Google Scholar
  18. 17.
    M. A. Mestvirishvili, K. A. Modestov, and Yu. V. Chugreev, “Quintessence scalar field in the relativistic theory of gravity,” Theor. Math. Phys. 152, 1342–1350 (2007). arXiv:grqc/0612105.MathSciNetCrossRefMATHGoogle Scholar
  19. 18.
    WMAP Collab., “First-year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters,” Astrophys. J. Suppl. 148, 175–194 (2003); arXiv:astro-ph:0302209.CrossRefGoogle Scholar
  20. 19.
    SDSS Collab., “Detection of the barion acoustic peak in the large-scale correlation function of SDSS luminous red galaxies,” Astrophys. J. Suppl. 633, 560–574 (2005); arXiv:astro-ph:0501171.CrossRefGoogle Scholar
  21. 20.
    A. A. Logunov, Relativistic Theory of Gravity (Nauka, Moscow, 2006).Google Scholar
  22. 21.
    D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe: Hot Big Bang Theory (Lenand, Moscow, 2015; World Scientific, Singapore, 2011).CrossRefMATHGoogle Scholar
  23. 22.
    SNfactory Collab., “The Hubble Space Telescope cluster supernova survay: improving the dark energy constraints above z>1 and building an early-type-hosted supernova sample,” Astrophys. J. 746, 85–112 (2012); astro-ph/1105.3470; supernova.lbl.gov/Union.ADSCrossRefGoogle Scholar
  24. 23.
    WMAP Collab., “Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation,” Astrophys. J. Suppl. 192, 330–387 (2011); astro-ph/1001.4538.Google Scholar
  25. 24.
    V. A. Rubakov, “Cosmology,” CERN Yellow Report CERN-2014-003 (2014), pp. 151–196; astro-ph/ 1504.03587.Google Scholar
  26. 25.
    P. Jetzer and C. Tortora, “Constraints from CMB temperature and other common observational data-sets on variable dark energy models,” Phys. Rev. D: Part. Fields 84, 043517–043527 (2011); astro-ph/1107.4610.ADSCrossRefGoogle Scholar
  27. 26.
    S. Basilaxos, M. Plionis, M. E. S. Alves, and J. A. S. Lima, “Dynamics and constraints of the massive gravitons dark matter flat cosmologies,” Phys. Rev. D: Part. Fields 83, 103506–103517 (2011); astroph/ 1103.1464.ADSCrossRefGoogle Scholar
  28. 27.
    SNfactory Collab., “Improved cosmological constraints from new, old and combined supernova datasets,” Astrophys. J. 686, 745–778 (2008); astroph/0804.4142.Google Scholar
  29. 28.
    WMAP Collab., “Five-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation,” Astrophys. J. Suppl. 180, 330–376 (2009); astro-ph/0803.0547.CrossRefGoogle Scholar
  30. 29.
    WMAP Collab., “Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results,” Astrophys. J. Suppl. 208, 19–51 (2013); astro-ph/1212.5226.CrossRefGoogle Scholar
  31. 30.
    Planck Collab., “Planck 2013 results. XV I. Cosmological parameters,” astro-ph/1303.5076.Google Scholar
  32. 31.
    Yu. V. Chugreev, “Dark energy and graviton mass in the nearby Universe,” Phys. Part. Nucl. Lett. 13, 38 (2016).CrossRefGoogle Scholar
  33. 32.
    A. S. Goldhaber and M. M. Nieto, “Photon and graviton mass limits,” Rev. Mod. Phys. 82, 939–979 (2010); hep-ph/0809.1003.ADSCrossRefGoogle Scholar
  34. 33.
    E. M. Lifshits and I. M. Khalatnikov, “Problems of relativistic cosmology,” Sov. Phys. Usp. 6, 495 (1964).ADSMathSciNetCrossRefGoogle Scholar
  35. 34.
    V. A. Belinskii, E. M. Lifshits, and I. M. Khalatnikov, “Oscillatory approach to the singular point in relativistic cosmology,” Sov. Phys. Usp. 13, 745 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations