Physics of Particles and Nuclei Letters

, Volume 14, Issue 4, pp 644–646 | Cite as

Teleportation of five-qubit state using six-qubit state

  • Binayak S. Choudhury
  • Arpan Dhara
  • Soumen Samanta
Computer Technologies in Physics
  • 21 Downloads

Abstract

We present a protocol for perfectly teleporting a five-qubit state of specific type. We utilize a sixqubit entangled quantum channel for this purpose. In this protocol only four out of 26 possible measurement outcomes appear. This leads to a substantial convenience in the implementation of the protocol.

Keywords

Quantum teleportation Five-qubit entangled state Six-qubit entangled state Measurement Quantum channel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    W. L. Li, C. F. Li, and G. C. Guo, “Probabilistic teleportation and entanglement matching,” Phys. Rev. A 61, 034301 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    B. S. Shi, Y. K. Jiang, and G. C. Guo, “Probabilistic teleportation of two-particle entangled state,” Phys. Lett. A 268, 161–164 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    P. Agrawal and A. K. Pati, “Probabilistic quantum teleportation,” Phys. Lett. A 305, 12–17 (2002).ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    F. Yan and D. Wang, “Probabilistic and controlled teleportation of unknown quantum states,” Phys. Lett. A 316, 297–303 (2003).ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    L. Z. Yu and T. Wu, “Probabilistic teleportation of three-qubit entangled state via five-qubit cluster state,” Int. J. Theor. Phys. 52, 1461–1465 (2013).MathSciNetCrossRefGoogle Scholar
  7. 7.
    H. F. Hofmann, T. Ide, T. Kobayashi, and A. Furusawa, “Fidelity and information in the quantum teleportation of continuous variables,” Phys. Rev. A 62, 062304 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    S. Oh, S. Lee, and H. W. Lee, “Fidelity of quantum teleportation through noisy channels,” Phys. Rev. A 66, 022316 (2002).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Li, M. Y. Ye, and X. M. Lin, “Entanglement fidelity of the standard quantum teleportation channel,” Phys. Lett. A 377, 1531–1533 (2013).ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    P. Espoukeh and P. Pedram, “Quantum teleportation through noisy channels with multi-qubit GHZ states,” Quantum Inf. Process. 13, 1789 (2014).ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    L. T. Knoll, C. T. Schmiegelow, and M. A. Larotonda, “Noisy quantum teleportation: an experimental study on the influence of local environments,” Phys. Rev. A 90, 042332 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A 49, 1473–1476 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    Y. H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86, 1370 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature 429, 737 (2004).ADSCrossRefMATHGoogle Scholar
  16. 16.
    S. B. Zheng, “Scheme for approximate conditional teleportation of an unknown atomic state without the bell-state measurement,” Phys. Rev. A 69, 064302 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    F. L. Yan and X. Q. Zhang, “A scheme for secure direct communication using EPR pairs and teleportation,” Eur. Phys. J. B 41, 7578 (2004).Google Scholar
  18. 18.
    T. Gao, F. L. Yan, and Z. X. Wang, “Controlled quantum teleportation and secure direct communication,” Chin. Phys. 14, 893–897 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    G. Rigolin, “Quantum teleportation of an arbitrary two qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    H. J. Cao and H. S. Song, “Quantum secure direct communication scheme using a W state and teleportation,” Phys. Scr. 74, 572 (2006).ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    C. W. Tsai and T. Hwang, “Teleportation of a pure EPR state via GHZ-like state,” Int. J. Theor. Phys. 49, 1969–1975 (2010).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Q. Shao, “Quantum teleportation of the two-qubit entangled state by use of four-qubit entangled state,” Int. J. Theor. Phys. 52, 2573–2577 (2013).MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    H. P. Zhu, “Perfect teleportation of an arbitrary twoqubit state via GHZ-like states,” Int. J. Theor. Phys. 53, 4095–4097 (2014).CrossRefMATHGoogle Scholar
  24. 24.
    Y. Y. Nie, Y. H. Li, C. P. Jin, J. C. Liu, and M. H. Sang, “Quantum information splitting of an arbitrary multiqubit GHZ-type state by using a four-qubit cluster state,” Int. J. Theor. Phys. 50, 2799 (2011).CrossRefMATHGoogle Scholar
  25. 25.
    Y. H. Li, X. L. Li, L. P. Nie, and M. H. Sang, “Quantum teleportation of three and four-qubit state using multi-qubit cluster states,” Int. J. Theor. Phys. 55, 1820–1823 (2016).CrossRefMATHGoogle Scholar
  26. 26.
    B. S. Choudhury and A. Dhara, “Teleportation protocol of three-qubit state using four-qubit quantum channels,” Int. J. Theor. Phys. doi 10.1007/s10773-016-2967-1Google Scholar
  27. 27.
    Y. H. Li, M. H. Sang, X. P. Wang, and Y. Y. Nie, “Quantum teleportation of a four-qubit state by using six-qubit cluster state,” Int. J. Theor. Phys. doi 10.1007/s10773-016-2982-2Google Scholar
  28. 28.
    B. Zhang, T. X. Liu, and J. Wang, “Quantum teleportation of an arbitrary n-qubit state via GHZ-like states,” Int. J. Theor. Phys. 55, 1601–1611 (2016).CrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Binayak S. Choudhury
    • 1
  • Arpan Dhara
    • 1
  • Soumen Samanta
    • 1
  1. 1.Department of MathematicsIndian Institute of Engineering Science and TechnologyHowrah, West BengalIndia

Personalised recommendations